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Recent work on many-particle systems reveals the existence of regular collective perturbations correspond-
ing to the smallest positive Lyapunov exponentssLEsd, called hydrodynamic Lyapunov modes. Until now,
however, these modes have been found only for hard-core systems. Here we report results on Lyapunov spectra
and Lyapunov vectorssLVsd for Lennard-Jones fluids. By considering the Fourier transform of the coordinate
fluctuation densityusadsx,td, it is found that the LVs withl<0 are highly dominated by a few components with
low wave numbers. These numerical results provide strong evidence that hydrodynamic Lyapunov modes do
exist in soft-potential systems, although the collective Lyapunov modes are more vague than in hard-core
systems. In studying the density and temperature dependence of these modes, it is found that, when the value
of the Lyapunov exponentlsad is plotted as function of the dominant wave numberkmax of the corresponding
LV, all data from simulations with different densities and temperatures collapse onto a single curve. This shows
that the dispersion relationlsad vs kmax for hydrodynamical Lyapunov modes appears to be universal for the
low-density cases studied here. Despite the wavelike character of the LVs, no steplike structure exists in the
Lyapunov spectrum of the systems studied here, in contrast to the hard-core case. Further numerical simula-
tions show that the finite-time LEs fluctuate strongly. We have also investigated localization features of LVs
and propose a length scale to characterize the Hamiltonian spatiotemporal chaotic states.
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I. INTRODUCTION

One of the most successful theories in modern science is
statistical mechanics, which allows one to understand the
macroscopicsthermodynamicd properties of matter from a
statistical analysis of the microscopicsmechanicald behavior
of the constituent particles. In spite of this, using certain
probabilistic assumptions such as Boltzmann’sStosszahlan-
satz renders the lack of a firm foundation of this theory,
especially for nonequilibrium statistical mechanics. Fortu-
nately, the concept of chaotic dynamics developed in the
20th centuryf1g is a good candidate for coping with these
difficulties. Instead of the probabilistic assumptions, the dy-
namical instability of trajectories can provide the necessary
fast loss of time correlations, ergodicity, mixing, and other
dynamical randomnessf2g. It is generally expected that dy-
namical instability is at the origin of macroscopic transport
phenomena and that one can find certain connections be-
tween them. In the past decade, some beautiful theories in
this direction have already been developed. Examples are the
escape-rate formalism by Gaspard and Nicolisf3,4g and the
Gaussian thermostat method due to Nosé, Hoover, Evans,
Morriss, and othersf5–7g, where the Lyapunov exponents
were related to certain transport coefficients.

Very recently, molecular dynamics simulations on hard-
core systems revealed the existence of regular collective per-
turbations corresponding to the smallest positive Lyapunov
exponentssLEsd, named hydrodynamic Lyapunov modesf8g.
This opens a possible way for a connection between
Lyapunov vectors, quantities characterizing the dynamical

instability of trajectories, and macroscopic transport proper-
ties. A lot of work f9–16g has been done to identify this
phenomenon and to find its origin. It is commonly thought
that the appearance of these modes is due to the conservation
of certain quantities in the systems studiedf10–14g. A natural
consequence of this expectation is that the appearance of
such modes would not be an exclusive feature of hard-core
systems and should be generic to a large class of Hamil-
tonian systems. However, until now, these modes have been
identified only in computer simulations of hard-core systems
f9,10,16g.

In this work, we report results about a one-dimensional
s1Dd system with Lennard-Jones interaction. Although the
identification of regular hydrodynamic Lyapunov modes by
the naked eye is difficult for soft-potential systemsf16g, our
technique based on a spectral analysis of Lyapunov vectors
sLVsd shows strong evidence that hydrodynamic Lyapunov
modes do exist in this case. The influence of density and
temperature changes is studied in detail. The dispersion rela-
tion for hydrodynamic Lyapunov modes, the dominant wave
number as a function of the corresponding LEs, is found to
have a quite weak dependence on the densities and tempera-
tures used.

Furthermore we study the localization properties of LVs.
Based on the extensive nature of LVs withl<0, we propose
a length scale to characterize a spatiotemporal chaotic
Hamiltonian system. It is expected that this quantity will be
useful for the task of distinguishing different spatiotemporal
chaotic states and characterizing transitions among them.
This is an important open question in the study of spatiotem-
poral chaosf17g.

II. MODEL

In this study we use a 1D Lennard-Jones system with
Hamiltonian
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H = o
i=1

N

mvi
2/2 + o

i, j

Vsxj − xid. s1d

The interaction potential among particles is of the form

Vsrd = 54eFSs

r
D12

− Ss

r
D6G − Vc if r ø rc,

0 otherwise,
6 s2d

with Vc=4efss / rcd12−ss / rcd6g. The potential is truncated in
order to lower the computational burden. Note, however, that
due to the truncation the forcefsrd;−V8srd and its deriva-
tive f8srd are not continuous at the truncation pointrc. This
will introduce additional noise in the numerical integration
of the equation of motion and the corresponding tangent dy-
namics. For this reason, two other potentials with continuous
derivatives at the truncation point were also simulated to
check the influence on the results given below. The first one
was proposed by Stoddard and Fordf18g. It is continuous in
the force at the truncation point,

Vsrd = 54eFSs

r
D12

− Ss

r
D6G + c2S r

rc
D2

+ Vc if r ø rc,

0 otherwise,
6
s3d

with c2=4ef6ss / rcd12−3ss / rcd6g and Vc=4ef−7ss / rcd12

+4ss / rcd6g. The second potential used is continuous in addi-
tion in the first derivative of the force and it is of the form

Vsrd = 4eFSs

r
D12

− Ss

r
D6G + c4S r

rc
D4

+ c2S r

rc
D2

+ Vc s4d

for r ø rc, and Vsrd=0 otherwise. The constants are
given by c4=4ef−21ss / rcd12+6ss / rcd6g, c2=4ef48ss / rcd12

−15ss / rcd6g, andVc=4ef−28ss / rcd12+10ss / rcd6g. Using the
same integration step size, the latter two potentialsfEqs.s3d
and s4dg typically yield better numerical accuracy than the
first onefEq. s2dg. This will somewhat influence the quality
of the zero-value Lyapunov exponents. The qualitative be-
haviors of the Lyapunov modes, however, turn out to be not
affected by the above modifications of the potentialssee the
Appendixd.

The system is integrated using the velocity form of the
Verlet algorithm with periodic boundary conditionsf19g. In
our simulations, we setm=1, s=1, e=1, and rc=2.5. All
results are given in reduced units, i.e., length in units ofs,
energy in units ofe, and time in units ofsms2/48ed1/2. The
time step used in the molecular dynamics simulation ish
=0.008. The standard Gram-Schmidt reorthonormalization
algorithm f20,21g is used to calculate the local dynamical
instability of the systems studied. The time interval for peri-
odic reorthonormalization is 30h to 100h. Throughout this
paper, the particle number typically is denoted byN, the
length of the system byL, and the temperature byT.

III. NUMERICAL RESULTS

A. The stationary state

In the numerical calculation of the Lyapunov instability of
a many-body systemf22g, there are some important time
scales to be kept in mind: the first one is the time for a
many-body system to relax to a stationary state, which guar-
antees that quantities measured afterward are not for a tran-
sient state; the second is the time for the set of Lyapunov
vectors to relax to their correct orientations since offset vec-
tors are usually selected randomly at the beginning; the third
is the time used to count LEs and LVs, which should be long
enough to ensure that the trajectory wanders all over the
attractor. For a many-body system like the one studied here,
these time scales can be extremely long due to the large
number of degrees of freedom involvedf23,24g.

The time evolution of state variables like temperatureT
and total energy for a case with parameter settingsN=100,
L=1000, andT=0.2 is shown in Fig. 1. In the beginning of
our molecular dynamics simulation, particles are placed ran-
domly in the intervalf0,Lg. Their velocities are chosen ran-
domly from a Boltzmann distribution. In order to equilibrate
the system, it is coupled to a stochastic heat bath with given
temperatureT, i.e., every 500 steps the velocities of the par-
ticles are replaced with velocities that were drawn from a
Boltzmann distribution corresponding to that temperature.
This was done for a time period of lengthteq, which is longer
than the relaxation time of the system at this temperature.
After the equilibration procedure, the system is allowed to
evolve with constant total energy, i.e., without the heat bath,
for a time period of the same length asteq, in order to be sure
that the system is already in a stationary state at given tem-
peratureT. In Fig. 1, the period with the thermal bath is
omitted and only the part of the evolution with constant total
energy is shown. The nearly constant value of temperature
means that the system has already reached a stationary state
and one can start the calculation of the Lyapunov instability
of the system. In the inset of Fig. 1, one can see that there
exist short-term fluctuations in the total energy. The energy
fluctuations are mainly due to the discretization of the evo-
lution equations for the numerical integration. In general, the

FIG. 1. Time evolution of temperatureT;kmv2l and total en-
ergy. The inset shows that the total energyE has small short-term
fluctuations but no long-term drift. Detailed calculation shows that
the standard deviation of the total energyssEd=4310−7. The
nearly constant state variables show that the system has already
reached a stationary state. The parameter settings used here areN
=100,L=1000, andT=0.2.
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discretized equations can be regarded as resulting from a
periodically kicked system, implying that the evolution is no
longer autonomous. The amplitude of the numerical error
caused by this effect in general depends on the integration
algorithm used. Our preference for the standard velocity Ver-
let algorithm, although it is of lower order than the typical
fourth-order Runge-Kutta algorithm, is due to its property of
preserving time reversibility and phase space volumes. These
properties ensure that the Verlet algorithm shows little long-
term drift in the total energy although its short-time fluctua-
tions may be larger than for Runge-Kutta integratorsf26g. An
additional difficulty faced in the numerical integration is the
discontinuity in the derivatives of the potential caused by its
truncation. Here the flowing in and out of the interaction
range of particles leads to additional numerical noise. In gen-
eral, decreasing the integration step size can reduce the effect
of numerical errors and improve the accuracy of the energy
conservation. This is also confirmed by our numerical simu-
lations ssee the Appendixd. A smaller step size, however,
means that more integration steps are needed to simulate a
fixed length trajectory. Limited by the capacity of our com-
puters, we are forced to select an integration step size that
minimizes the total error resulting on one hand from too
short trajectories and on the other hand from the finite step
size.

The pair distribution functionGsrd shown in Fig. 2 tells
us that the stationary state forT=0.2 is a broken-chain state
with short-range order. This is generic for a 1D Lennard-
Jones system with not too high densityf27g.

B. Benettin method using Gram-Schmidt orthogonalization

The standard method invented by Benettinet al. f20g and
Shimada and Nagashimaf21g is the most efficient one to
calculate the Lyapunov exponents and Lyapunov vectors of
large systems. HereN3N linearized equations forN offset
vectors in tangent space were integrated simultaneously with
the set ofN nonlinear equations for the reference trajectory.
Offset vectors were periodically reorthonormalized using the
Gram-Schmidt algorithm. The resulting rescaling factors

measure the expansion or contraction rate of offset vectors in
certain directions. Averaging their logarithms for a periodt
gives what are calledfinite-time Lyapunov exponentslt. The
limit l;lt→+` is what is usually called theLyapunov expo-
nent. The value of a finite-time LElt depends on the trajec-
tory segment where it is calculated and usually it fluctuates
as the segment moves along the trajectory. Howeverl+` is
time independent and unique for an ergodic system. In this
sense,l+` is a global quantity characterizing the system at-
tractor, while the finite-time LEs are local quantities which
contain more detailed information about the dynamics. The
offset vectors just after reorthonormalization are called
Lyapunov vectors. These are local quantities characterizing
the system attractor similar to the finite-time LEs.

Another point to be noted is that Lyapunov vectors ob-
tained using Benettinet al.’s method are always mutually
orthogonal while the local unstable and stable directions are
not orthogonal in general. In this sense, these are two differ-
ent sets of vectors. They are also different from the ones in
the multiplicative ergodic theoremf28g. However, recent
study shows that they are indirectly related to the set of Os-
eledec vectorsf29g. Lyapunov vectors obtained in the stan-
dard way can at least represent the most unstable direction in
a certain subspace and they already contain a lot of important
information about the dynamical instability in tangent space.
We will rely on them to continue our study in this paper.

C. Finite-time Lyapunov exponents with wild
fluctuations

The Lyapunov spectrum for the case withN=100, L
=1000, andT=0.2 is shown in Fig. 3. Here only half of the
spectrum is shown since all LEs of Hamiltonian systems
come in pairs according to the conjugate-pairing rule
f30,31g. From the enlargement shown in the inset of Fig. 3
for the part nearlsad<0, one cannot see any stepwise struc-
ture in the Lyapunov spectrum in contrast to the case of
hard-core systemsf10g. This is the typical result obtained for
our soft-potential system.

From Fig. 3 it is tempting to conclude that there is only
one zero-value Lyapunov exponent in the part of the spec-

FIG. 2. sad Snapshot of the particle positionsxi vs index of
particlesi andsbd pair distribution functionGsrd obtained from the
distances between all particlessupper paneld and from nearest
neighbors onlyslower paneld for the stationary state shown in Fig. 1
fseef25g for the definition ofGsrdg. The sharp peaks inGsrd imply
that the state is a broken-chain state.

FIG. 3. Lyapunov spectrum for the state shown in Fig. 2. En-
largement of the part in the regimelsad<0 is shown in the inset. It
is the result of an average over 58 samples with different initial
conditions and for each sample the averaging period is 43106h.
Here no stepwise structure exists, in contrast to the case of hard-
core systems. This is a typical result for our soft-potential system.
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trum shown. This seems to contradict the expectation that
there should be two due to the conservation lawsf10,12,14g.
Our detailed studies of these Lyapunov exponents and the
corresponding Lyapunov vectors show that there are indeed
four zero-value Lyapunov exponentsstwo in the part shownd.
The point is that two of themsls99d and ls102dd are more
sensitive to numerical errors than the other twosls100d and
ls101dd. The two exponents corresponding to translational in-
variance in space and momentum conservation are closer to
zero since these properties are preserved exactly in the nu-
merical integration routine. The other pair of Lyapunov ex-
ponents, which show relatively large deviations from zero,
correspond to energy conservation and translational invari-
ance in time. These properties are not preserved exactly by
the numerical discretization of the governing equations of
motion. Correspondingly, fluctuations in the total energy are
introduced by the numerical integrationssee Fig. 1d and in
consequence lead to the observed deviation from zero of this
pair of Lyapunov exponents. In principle, one can improve
the results for this pair of Lyapunov exponentssi.e., bring
them closer to zerod by reducing the integration step size.
The main limitation comes from the capacity of the compu-
tational resource because one needs to integrate over very
long time periods. In order to support this point of view we
performed extensive numerical simulations for small systems
with few particles. The details of this analysis are provided
in the Appendix. Our numerical results show also that the
quality of this pair of LEs is sensitive to the details of the
integration scheme, while the behavior of the Lyapunov
modes is quite robust.

The fluctuations in local instabilities of trajectories are
demonstrated by the distribution of finite-time LEs. In Fig. 4
such distributions for some LEs in the regimel<0 are pre-
sented. Fluctuations of the finite-time Lyapunov exponents
are quite large compared with the difference between their

mean values, i.e.,sslt
sadd;Îklt

sad2l−klt
sadl2@ ulsad−lsa+1du.

Here k¯l means the time average. The strong fluctuation in
local instabilities is one of the possible reasons for the dis-
appearance of the stepwise structures in the Lyapunov spec-
tra. It could also cause the mixing of nearby Lyapunov vec-
tors. The mixing may be at the origin of the intermittency

observed in the time evolution of the spatial Fourier trans-
form of LVs ssee Sec. III Ed.

D. Bending of Lyapunov spectrum with decreasing particle
density

We studied also the influence of the particle density on the
Lyapunov spectrum by increasing the length of the system
with the particle numberN kept fixed. As can be seen in Fig.
5, the Lyapunov spectrum becomes more and more bent with
increasingL. For the case ofL=4000, the spectrum can al-
ready be unambiguously divided into two regimes: In the
upper regime, Lyapunov exponents decrease more quickly
with increasing index than in the lower regime. Such a bend-
ing of the Lyapunov spectrum was related to the separation
of two time scales in dilute particle systemsf32g. Our con-
jecture is that one is the time of local collision events, and
the other is due to the collective motion of the particles.
Support for this conjecture comes from our results presented
in Sec. III E 4. For a system with high density, the collisions
are so frequent that there are strong correlations between
consecutive collisions and one can no longer separate them
from each other. The collisions themselves contribute to the
collective motion of the system. Therefore no time scale
separation happens here and the LEs decrease gradually.

E. Spatial structure of LVs with l„a…É0

1. Coordinate fluctuation density

Another quantity used to characterize the local instability
of trajectories is the Lyapunov vectordGsad, which represents
expanding or contracting directions in tangent space. In the
study of hard-core systems, Posch and co-workers found that
the coordinate parts of the Lyapunov vectors corresponding
to l<0 are of regular wavelike characterf8–10g. They are
referred to ashydrodynamic Lyapunov modes. We are search-
ing here for the counterpart of these modes in our soft-
potential system.

Remember that each of the LVs consists of two parts: the
displacementsdxi in coordinate space anddvi in momentum
space. In past studies of hydrodynamic Lyapunov modes in
hard-core systems, only the coordinate partdxi was consid-

FIG. 4. Distribution of the finite-time Lyapunov exponentlt
sad

wheret is equal to the period of reorthonormalization and the index
of LEs a is equal to 90, 94, and 98, respectively. The strong fluc-
tuations oflt

sad are one of the possible reasons for the disappearance
of the stepwise structures in the Lyapunov spectrum. The parameter
settings used here areN=100,L=1000, andT=0.2.

FIG. 5. Normalized Lyapunov exponentslsad /ls1d with L=200,
400, 1000, 2000, and 4000, respectively. The Lyapunov spectrum
becomes more and more bent as the particle densityr=N/L is
decreased. This implies the separation of two time scales. HereN
=100 andT=0.2.
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ered. This is due to an interesting feature of hydrodynamic
Lyapunov modes found in Ref.f12g which says that the
angles between the coordinate part and the momentum part
are always small, i.e., the two vectors are nearly parallel.
Therefore, it is already sufficient to use onlydxi for studying
dG. For our soft-potential system, we find that the angles
between the coordinate part and the momentum part are no
longer as small as in the hard-core systems. However, we
will still follow the tradition of studying the coordinate part
of the LV first and come to the momentum part afterward.

Analogous to the definition of microscopic densities in
hydrodynamicsf25g, we define a quantity called thecoordi-
nate fluctuation densitysCFDd

usadsx,td = o
i=1

N

dxi
saddsx − xid. s5d

Profiles ofusadsx,td for some typical LVs of the Lennard-
Jones system are presented in Fig. 6. It can be seen that
usadsx,td’s for LVs corresponding to the largest Lyapunov
exponents are highly localized, for exampleus1dsx,td and
us10dsx,td, while those for LV90 and LV95 are more distrib-
uted. The study of the localization of LV1, the LV corre-
sponding to the largest Lyapunov exponent, is of long history
f9,10,32–37g and it was related, e.g., to defect events in
simulations of Benard convectionf36g. We leave the discus-
sion on this point to Sec. III F. The temporal evolution of
us95dsx,td is shown in Fig. 7 in order to make the possibly
existing wavelike structure more evident. A wave structure,
however, cannot unambiguously be detected here with the
naked eye.

2. Spatial power spectrum of CFD and intermittency in its time
evolution

Now we turn to the spatial Fourier transform ofusadsx,td,
which reads

ũk
sadstd =E usadsx,tdexps− ik ·xddx= o

j=1

N

dxj
sad expf− ik ·xjstdg.

s6d

In previous studies, in order to make the wave structure
more obvious, certain smoothing procedures in time or space
were applied to the Lyapunov vectors. For a 1d hard-core
system with only a few particles, this procedure has been
shown to be quite useful in identifying the existence of hy-
drodynamic Lyapunov modesf15g. The success of this strat-
egy relies on the fact that some of the hydrodynamic
Lyapunov modesstransverse modesd of hard-core systems
are stationaryf8g. Therefore, time averaging can indeed sup-
press the noise component and make the long-wavelength
modes more significant. For a soft-potential system, all the
Lyapunov vectors are not stationary due to the random mix-
ing among them. In particular, for our one-dimensional sys-
tem studied here, no transverse modes but only longitudinal
Lyapunov modes exist. In consequence of this, the smooth-
ing procedure is no longer helpful for detecting the hidden
regular modes and can even damage themf16g. Here we
apply the spatial Fourier transformation to the instantaneous
quantity usadsx,td instead. The algorithm offered especially
for unevenly distributed data is very suitable for our case
f38g. Furthermore, we take the long-time averagesand en-
semble averaged of the instantaneous spatial Fourier spec-
trum

suu
sadsk,td ; uũk

sadstdu2 s7d

since it is expected that inSuu
sadskd;ksuu

sadsk,tdl the contribu-
tion of stochastic fluctuations will be averaged out while the
information about the collective modes will be left and ac-
cumulated. The following results show that this technique is
quite successful in detecting the hidden collective modes.

The time evolution of the instantaneous spatial Fourier
spectrumsuu

s95dsk,td for Lyapunov vector no. 95 is shown in
Fig. 8 as an example. Two quantities are recorded with in-
creasing time. One is the peak wave numberk* , which marks
the position of the highest peak in the spectrumsuu

sadsk,td ssee
Fig. 9d. The other is the spectral entropyHsstd f39g, which
measures the distribution property of the spectrumsuu

sadsk,td.
It is defined as

Hsstd = − o
ki

suu
sadski,tdln suu

sadski,td. s8d

A smaller value ofHsstd means that the spectrumsuu
sadsk,td is

highly concentrated on a few values ofk, i.e., these compo-
nents dominate the behavior of the LV. Both of these quan-

FIG. 6. usadsx,td for LVs with index a=1, 10, 90, and 95, re-
spectively.usadsx,td is visualized by plotting vertically the fluctua-
tionsdxi

sad at the corresponding positionsxi along thex axis. Notice
that the LVs witha=1 and 10 are more localized while those with
a=90 and 95 are more distributed. The parameter settings used here
areN=100,L=1000, andT=0.2.

FIG. 7. Time evolution ofus95dsx,td for parameters as in Fig. 6.
No clear wave structure can be detected.
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tities behave intermittently as shown in Fig. 8. Large inter-
vals of nearly constant low valuessoff stated are interrupted
by short period of burstsson stated where they experience
large values. Details of typical on and off states are shown in
Fig. 9. It can be seen that the off state is dominated by the
low-wave-number componentsssee the sharp peak at low
wave numberk*d while the on state is more noisy and there
are no significant dominant components. This intermittency
in the time evolution of the spatial Fourier spectrum of LVs
is a typical feature of soft-potential systems. It is conjectured
that this is a consequence of the mixing of nearby LVs
caused by the wild fluctuations of local instabilities. Due to
the mutual interaction among modes, the hydrodynamic
Lyapunov modes in soft-potential systems are only of finite
lifetime. In the dynamic Lyapunov structure function esti-
mated, the peak representing the propagatingsor oscillatingd
Lyapunov modes is of finite width. This is a support of our
conjecture that the hydrodynamic Lyapunov modes are of
finite lifetime. Details of this study will be presented else-
wheref40g.

Recently Eckmannet al. conjectured that the longitudinal
Lyapunov modes came in pairs with the so-called P modes
f41g. The dynamics of the Lyapunov modes were explained
as a rotation with constant angular velocity in the subspace
spanned by a certain LP pair. Numerical results for hard-core

systems were provided to support their conjecture. We expect
that the proposed mechanism, possibly in a modified form,
also works for the soft-potential system studied here. The
strong mixing among Lyapunov modes in our system, how-
ever, makes the dynamics of the modes more complex than
in the hard-core systems. If only mixing between the modes
in the same LP pair were possible as in hard-core systems, a
regular periodic oscillation instead of the irregular intermit-
tency behavior ink* would be expected. Therefore we think
that the observed intermittency in the dynamics of the
Lyapunov modes is the combined effect of the rotation and
the finite lifetime of the modes.

In Fig. 10, the time-averaged spectral entropykHsstdl is
plotted against the index of the LVs. It increases gradually as
the index decreases fromN−2. This means that LVs corre-
sponding to smaller positive LEs are more localized in Fou-
rier space, i.e., they have more wavelike character, than those
corresponding to larger LEs.

3. Dispersion relation of hydrodynamic Lyapunov modes

Now we consider the time-averaged spatial Fourier spec-
trum Suu

sadskd of LVs. Two cases withL=1000 and 2000 are
shown in Fig. 11. It is not hard to recognize the sharp peak at
l<0 in the contour plot of the spectrum. In increasing the
Lyapunov exponents, the peak shifts to the larger-wave-
number side. A dashed line is plotted to show how the wave
number of the peakkmax changes withlsad. To further dem-
onstrate this point, in Fig. 12, the value of the Lyapunov
exponentlsad is plotted versuskmax of the corresponding
LVs. We call this thedispersion relationof the hydrodynami-
cal Lyapunov modes. The numerical fitting of the data shows
that forl<0, lsad,kmax

g with the exponentg<1.2. We con-
jecture that a linear dispersion relationlsad,kmax may be
obtained as the thermodynamic limit is approached and the
deviation from the linear function of the data shown in Fig.
12 is due to finite-size effects.

In order to show that the peak inSuu
sadskd is not a result of

the highly regular packing of particles in the broken-chain
state, the static structure functionf25g

FIG. 8. Intermittent behavior of the peak wave numberk* and
spectral entropyHsstd for the spatial Fourier spectrum ofus95dsx,td.
The parameter settings used here areN=100,L=1000, andT=0.2.

FIG. 9. sad Variation of the peak wave numberk* with time. sbd,
scd Two typical snapshots of LV95, off and on states att=44 and
176, respectively.sdd,sed Their spatial Fourier transforms. The spec-
trum for the off state has a sharp peak at smallk* while that for the
on state has no dominant peak. The parameter settings used here are
N=100,L=1000, andT=0.2.

FIG. 10. Time-averaged spectral entropykHsstdl vs index of
LVs. The gradual decrease ofkHsstdl from a<0 means that LVs
corresponding to smaller positive LEs are more localized in Fourier
space, i.e., they have more wavelike character, than those corre-
sponding to larger LEs. The parameter settings used here areN
=100,L=1000, andT=0.2.
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Sskd ; E Gsrdexps− ikrddr s9d

for the caseL=2000 is plotted in the same figure asSuu
sadskd,

whereGsrd is the pair correlation function shown in Fig. 2. It
can be seen thatSskd is nearly constant in the regimek<0,
the place where a sharp peak was observed inSuu

sadskd. The

regular packing of particles causes the formation of a peak at
k/2p<0.9 in Sskd. This corresponds to a tiny peak at the
samek value inSuu

sadskd for those LVs withl<0. These facts
show clearly that the collective modes observed in LVs are
not due to the regular packing of particles.

To further demonstrate the properties of these modes, in
Fig. 13,kmax is plotted versus the index of the LVs. As can be
seen, for LVs withl<0, i.e., witha<N, the value ofkmax is
quite smallssee the enlargement in Fig. 14d. For example, for
a=96, 97, and 98,kmax=2p /L, which is the smallest nonzero
wave number allowed by the periodic boundary conditions
used. Another point to be noticed is the step structure in
plotting kmax as a function ofa. This is similar to the degen-
eration of wave numbers found in the hard-core case, al-
though the steps here are not so regular. In the middle panel
of Fig. 13, the heightSuu

sadskmaxd of the highest peak in the
time-averaged spatial spectrum is plotted as a function of the
index of the LVs. Apart from LVs no. 99 and no. 100snot
shownd for the conserved quantities,Suu

sadskmaxd decreases
gradually in decreasing the index fromN−2. Similarly to the
definition of the spectral entropy for the instantaneous spec-
trum suu

sadsk,td in Eq. s8d, one can also define a spectral en-
tropy HS for the averaged spectrumSuu

sadskd. The spectral en-
tropy HS for Suu

sadskd is presented in the bottom panel of Fig.
13. It possesses a minimum ata=98 where the Lyapunov

FIG. 11. sColor onlined Contour plot of the spectrumSuu
sadskd for

L=1000 and 2000. There is a sharp peak atk<0 and l<0. To
guide eyes, a dashed line is plotted to show how the peak wave
numberkmax changes with the variation ofl. The sudden jump in
kmax is marked with an arrow. In total 58 samples for the case of
L=1000sten forL=2000d are used for averaging for each period of
43106h. HereT=0.2 andN=100.

FIG. 12. The Lyapunov exponentlsad is plotted as function of
the wave numberkmax of the highest peak in the time-averaged
spatial Fourier spectrum of LVs. The dashed line is of the form
lsad,kmax

1.2 . The parameter settings used here areN=100,L=1000,
andT=0.2.

FIG. 13. sTop paneld The wave numberkmax of the highest peak
in the time-averaged spatial Fourier spectrum of LVs.sMiddle
paneld The height Suu

sadskmaxd of the highest peak in the time-
averaged spectrum.sBottom paneld The spectral entropyHS for the
averaged spectrumSuu

sadskd. The sudden jump inkmax implies the
separation of time scales. The parameter settings used here areN
=100,L=1000, andT=0.2.

FIG. 14. Enlargement of Fig. 13 for the part in the regimea
.N.
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exponent is the smallest positive one. According to the defi-
nition of the spectral entropy, the minimum means that the
spectrum of LV no. 98 is most significantly dominated by a
few components.

All of our results shown above give strong evidence that
the Lyapunov vectors corresponding to the smallest positive
LEs in our 1D Lennard-Jones system are highly dominated
by a few components with small wave numbers, i.e., they are
similar to the hydrodynamic Lyapunov modes found in hard-
core systems. The wavelike character becomes weaker and
weaker as the value of the LE is increased gradually from
zero.

4. Separation of time scales

Another interesting point in Fig. 13 is the sudden jump in
kmax at a<26 which divides the whole set of LVs into two
groups. It is believed that this sudden jump is related to the
bending of the LE spectrum and the separation of time scales
in a dilute system. As shown in Fig. 15, the sudden jump is
in the regime where the LE spectrum is most strongly bent,
although it is not at the exact place whered2lsad /da2 expe-
riences the maximal value. Further work is needed to reveal
the underlying connection between these phenomena.

5. Influence of density and temperature

To study how the change in density influences the behav-
ior of LVs, we increase the lengthL of the system from 200
to 4000 with the particle numberN kept fixed at 100. From
the time evolution ofk* shown in Fig. 16, one sees that, in
increasing the densityr=N/L, the occurrence of the on state
becomes more frequent, i.e., the domination of low-wave-
number components is much weaker. The spatial Fourier
spectra for LVs with LEs in the regimelsad.0, however, are
always dominated by certain low-wave-number components
irrespective of the densityssee Fig. 17d.

An important point is the collapse of data of dispersion
relations from simulations with various densities and tem-
peratures to a single curvessee bottom panel of Fig. 17d.
This means, for hydrodynamic Lyapunov modes in our sys-
tem, that the dispersion functionlaskd is universal for the
particle densities and the system temperatures studied. Fit-
ting of the data to a power-law functionla,kmax

g gives the
value of the exponentg as 1.2±0.1 which is not far from a

linear dispersion. Since our simulations here are limited to
cases with relatively low density, the possibility of a density
dependence of the dispersion relation cannot be excluded for
high densities.

Another feature of Fig. 17sbottom paneld is that the sud-
den jump inkmax disappears as the system densityN/L is
increased. This is consistent with our above discussion that
the separation of time scales is significant only in dilute sys-
tems.

6. Dynamics of the momentum part

Now we turn to investigations of the spatial Fourier spec-
trum of the momentum part of LVs. Unfortunately, all the
spectra are more or less homogeneously distributed on all

FIG. 15. The Lyapunov spectrumlsad stop paneld, d2l /da2

smiddle paneld, andkmax sbottom paneld vs the indexa. The param-
eter settings used here areN=100,L=1000, andT=0.2.

FIG. 16. Same as top panel of Fig. 8, but with different density
r=sad 1/2, sbd 1/4, andscd 1/8, respectively. HereT=0.2 and the
particle numberN=100.

FIG. 17. sColor onlined sTop paneld the wave numberkmaxof the
highest peak in the time-averaged spatial Fourier spectrum of LVs
as a function of LV indexa. sBottom Paneld the Lyapunov exponent
lsad as function ofkmax. Note that in the bottom panel, all data from
simulations with different densities and temperatures collapse to a
single curve. Fitting of the low-wave-number part to a power-law
function la,kmax

g givesg<1.2±0.1. HereN=100 andT=0.2.
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wave numbers. For all the cases checked, no wavelike struc-
ture can be identified as for the coordinate part. One may
wonder why no modelike collective motion is observed in
the momentum part. There are two possibilities. One is that
the momentum part does contain information similar to the
coordinate part but it is too weak to be detected here due to
the strong noise. The other is that there is no similarity be-
tween the two parts at all and regular long-wave-length
modes exist only in the coordinate part. Further work is
needed to clarify which one is correct.

F. Localization properties of LVs

To study the localization of LVs, we employ the partici-
pation number, which is defined as

p ;Fo
i=1

N

sdxi
2 + dvi

2d2G−1

s10d

for a Lyapunov vectorsdxi
sad ,dvi

sadd f42g. This is a standard
quantity used in the study of disorder-induced localization
f43g, which roughly measures the number of particles that
contribute to the Lyapunov vector. For the homogeneous
Lyapunov vector LVN with w2;dxi

2+dvi
2=1/N, which cor-

responds to one of the zero-value LEs,p attains its maximal
valueN. On decreasing the index of LVs, LEs become larger
and larger. Accompanying this, the participation numberpsad

decreases as shown in Fig. 18, where the variation of the
time-averaged value ofpsad versus indexa andlsad, respec-
tively, is plotted. The decrease ofpsad implies that LVs be-
come more and more localized with decreasinga.

One should note thatpsN−2d for LVN−2 corresponding to
the smallest positive Lyapunov exponent is significantly dif-
ferent frompsNd=N for LVN with lsNd=0. In Fig. 18,psN−2d

<40 while psNd=100. In the study of space-time chaos, a
commonly used measure for quantifying spatiotemporal dis-
order is the fractal dimensionD. For spatiotemporal chaotic
systems the associated fractal dimensionsD are typically ex-
tensive quantities, i.e., they grow proportionally to the sys-
tem volumeV. According to this, a bounded intensive quan-
tity, the dimension correlation length, is definedf44g as jD
=limV→`sD /Vd−1/d. Based on the intuitive picture that a spa-
tiotemporally chaotic system is composed of many sub-
systems and that these subsystems are uncorrelated if they

are far apart, it is expected thatjD is proportional to the
two-point correlation length, which measures the spatial dis-
order of the system. A particular fractal dimension, the
Lyapunov dimensionDL, can be easily obtained using the
Kaplan-Yorke formalism which relates the Lyapunov dimen-
sion to Lyapunov exponents of the systemf45g. For a Hamil-
tonian system like the one studied here, Lyapunov exponents
are paired, i.e.,lsad+ls2dN−ad=0, due to the symplectic struc-
ture of the systemf30,31g. According to the Kaplan-Yorke
formalism, the Lyapunov dimension for ad-dimensional
Hamiltonian spatiotemporally chaotic system will beDL
=2dN independent of the details of the dynamics. Although
DL defined in such a way is proportional to the volume of the
system, i.e., reflects the extensiveness of the system, its value
is always a constant irrespective of the temperature change.
However, the two-point correlation length does change with
the temperature and it even becomes divergent as a phase
transition is encountered. In this sense, the Lyapunov dimen-
sion DL and the dimension correlation lengthjD are only
trivially defined here and not good quantities to characterize
spatiotemporal Hamiltonian chaos. Here we propose a length
scale based on the participation number of LVs:

jp
sad ; lim

V→`
spsad/Vd−1/d s11d

whered is the dimension of the physical space andV is the
system volume, which is simplyL for our d=1 case here. In
this definition, the quantitypsad plays a similar role as the
fractal dimensionD in the definition of the dimension corre-
lation lengthjD. According to the fact we mentioned above,
jp

sN−2d for LVN−2 corresponding to the smallest positive
Lyapunov exponent is a nontrivial value depending on the
state of the system.

Now we first show thatjp
sN−2d is an intensive quantity like

the conventionally defined dimension correlation lengthjD.
Here the particle densityr;N/L is kept fixed and the par-
ticle numberN is increased from 100 to 200. The fit of the
numerical data in Fig. 19 givespsN−2d,N0.99. This tells us
psN−2d is proportional to the system sizeN, i.e., it is an ex-

FIG. 18. Time-averaged participation numberpsad vs index of
LVs supper paneld and lsad slower paneld. The parameter settings
used here areN=100,L=110, andT=1.6.

FIG. 19. Time-averaged participation numberps1d andpsN−2d vs
particle numberN. The parameter settings used here areL /N=1.1
andT=1.6.
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tensive quantity. Correspondingly, the length scalejp
sN−2d is

independent ofN and is a well-defined intensive quantity.
The N dependence ofps1d for the LV corresponding to the
largest Lyapunov exponent is shown in the same plot. It is
fitted with ps1d,N0.76, i.e., the Lyapunov vector for the larg-
est LE is highly localized in spacef10,32,35g. This is con-
sistent with our above observationssee Fig. 6d.

Then we study the temperature dependence of the length
scale defined above. For a 200-particle system, the tempera-
ture is increased from 0.4 to 1.6. Results of the simulation
are shown in Fig. 20, where the variation ofps1d with tem-
peratureT is also presented. From the plot, one can see that
psN−2d sand consequentlyjp

sN−2dd decreases gradually with the
increase in temperature. This agrees with the intuitive expec-
tation that increasing the temperature makes the fluctuation
in the system stronger and stronger and renders the system
more and more disordered.

IV. CONCLUSION AND DISCUSSION

In this paper, we presented numerical results for the
Lyapunov instability of a Lennard-Jones system. Our simu-
lations show that the stepwise structure found in the
Lyapunov spectrum of hard-core systems disappears com-
pletely here. This is conjectured to be due to the strong fluc-
tuations in the finite-time LEsf10g. A techniquef40g based
on a spatial Fourier spectral analysis is employed to reveal
the hidden long-wavelength structure in LVs. A significantly
sharp peak with low wave number is found in the resultant
spatial Fourier spectrum for LVs withl.0. This serves as
strong evidence that hydrodynamic Lyapunov modes do exist
in soft-potential systemsf46g. The disappearance of the step
structure and the survival of the hydrodynamic Lyapunov
modes show that the latter are more robust and essential than
the former. Another important finding is that the dispersion
relation for hydrodynamic Lyapunov modes,lsad versuskmax,
appears to be universal for all the system temperatures and
particle densities used in our simulations. This finding will
not exclude a possible density dependence of the dispersion
relation for systems in the high-density regimef47g.

There is a difference between the Lyapunov vectors of our
Lennard-Jones system and those for the hard-core system
studied before. In hard-core systems, a Lyapunov vector with
a near zero Lyapunov exponent can be well fitted by a sinu-

soidal function A sinskx+fd. Correspondingly the spatial
power spectrum of the Lyapunov vector turns out to be
nearly ad function atk. Therefore in this case one can un-
ambiguously classify the Lyapunov vectors by their wave
numberk. The situation is quite different in the Lennard-
Jones system. Here the spatial spectrum of the Lyapunov
vector is broadened but still a dominant wave number can be
identified. This reminds us of the difference between sound
modes in solids and fluids, respectively.

In this study we have simulated a large number of system
parameter settings with the densityr in the range from 1/2
to 1/40 andT=0.2, 0.3, and 0.4. Here the average distance
between nearest neighborsa;L /N is quite large compared
to the equilibrium distancer0 defined throughV8sr0d=0. The
reason for choosing relatively dilute systems lies in the sus-
pected importance of hyperbolicity for the appearance of the
Lyapunov modesf11,48g. In a dilute Lennard-Jones system
as considered here, the particles can fly nearly freely for a
quite long period of time, then collide with their neighbors,
then separate from each other quickly, and so on. These scat-
tering events are similar to what happens in a hard-core sys-
tem. In contrast, if the particle density is increased to a value
comparable to or higher thanr0;1/r0, the effective interac-
tions among the particles become similar to that of a chain of
anharmonic oscillators, where hydrodynamic Lyapunov
modes were found to be difficult to observef48g. This is the
reason why dilute systems were selected in our study. The
use of relatively low temperatures is due to similar consid-
erations.

In the study of two-dimensional and quasi-one-
dimensional hard-core systems, two kinds of hydrodynamic
Lyapunov modes are identifiedf10,15g. One is referred to as
transverse and the other is called longitudinal. The former
modes do not propagate while the latter canf10g. According
to this classification, for the transverse Lyapunov modes, tak-
ing the time average can be a useful way to identify the
wavelike structure. In contrast to this, the detection of the
longitudinal Lyapunov modes, which are the only ones
present in one-dimensional systems, is a relatively difficult
task since due to its propagation time averaging is no longer
a suitable method to suppress the fluctuationsf15g. For the
case of soft-potential systems, in addition strong fluctuations
in local instabilities lead to an occasional mixing among
Lyapunov vectors. This is partially reflected in the intermit-
tent time evolution of spatial Fourier spectra of LVs. There-
fore the hydrodynamic Lyapunov modes in soft-potential
systems are more vague and more difficult to observef16g.
In this work, Fourier spectral analysis has been shown to be
quite successful in detecting the hidden wavelike structures
in LVs. A more general theoretical consideration of this
method is given elsewheref40g.

In studies of the hard-core case, it is conjectured that de-
generacies in the Lyapunov spectrum and in wave numbers
of hydrodynamic Lyapunov modes are determined by the
intrinsic symmetries of the Hamiltonian and the boundary
conditions. There is no contradiction between this statement
and the results reported here. The crucial point is the lifetime
of hydrodynamic Lyapunov modes. The above statement is
for the ideal case of pure modes with infinite long lifetime.
For the Lennard-Jones system studied here, the strong fluc-

FIG. 20. Time-averaged participation numberps1d andpsN−2d vs
temperatureT. The parameter setting used here is:N=200 andL
=220.
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tuation in local instability of trajectoriesswhich is reflected
on the wild fluctuations of finite-time Lyapunov exponentsd
leads to the mutual interaction and mixing among modes,
which renders the lifetime of modes becoming finite. On the
other hand, Lyapunov exponents are global quantities of the
system, which are the result of a time average along a long
trajectory wandering all over the phase space allowed. Due
to the mixing among modes, the Lyapunov exponents no
longer correspond to certain pure modes but to a mixture of
several modes. Therefore the degeneration predicted on the
basis of a symmetry analysis cannot be seen here. Actually,
fluctuations in the local instability of trajectoriessfluctua-
tions in the finite-time Lyapunov exponentsd do exist in all
dynamical systems. For the hard-core systems, however, it is
relatively weak in the directions corresponding tol<0 ssee
Fig. 12 in f10g for the comparison of fluctuations in finite-
time Lyapunov exponents for the hard-core case and the
WCA cased. Therefore the mixing among modes is quite rare
and weak. In consequence the lifetimes of the modes with
l<0 are quite long and even longer than the simulation
time. Evidence for our arguments above comes from the fact
that for hard-core systems the fluctuations in finite-time
Lyapunov exponents become stronger for increasing LEssee
Fig. 12 in Ref.f10gd and correspondingly the step structure is
less pronouncedsmore inclinedd for larger LEsssee Fig. 8 in
Ref. f10gd.

Until now, only the coordinate part of the LVs was used in
the study of hydrodynamic Lyapunov modes. For the case of
hard-core system, this is reasonable due to the interesting
feature of those LVs corresponding to near-zero LEs found in
f12g that the angles between the coordinate part and the mo-
mentum part are always small, i.e., the two vectors are nearly
parallel. For our soft-potential system, we find that the angles
between the coordinate part and the momentum part are no
longer as small as in hard-core systems. Even for hard-core
systems, recent results show that the two vectors are not
always parallelf32g. Therefore it is necessary to reconsider
the momentum part of LVs.

We studied also the influence of density and temperature
changes on the features of LVs and LEs. One effect of de-
creasing the density is that the Lyapunov spectrum becomes
more and more bent. The relation of the bending in the
Lyapunov spectrum to the separation of time scales was dis-
cussed recently in the work of Taniguchi and Morrissf32g. It
is obvious that the collisions between particles become more
and more rare as the density is decreased. They become
highly localized events since they happen at only a few
places at one moment. Therefore, the time scale of local
collision events, which is related to the largest LEsf2g, is
well separated from that for the collective motion of the sys-
tem, corresponding to the near-zero LEs. A further point is
the sudden jump found inkmax of the time-averaged spatial
Fourier spectrum of LVs. It divides the whole set of LVs into
two groups. The place of this sudden jump is in the regime
where the Lyapunov spectrum is strongly bent. Further work
is needed to reveal the underlying connection between these
phenomena.
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APPENDIX: ENERGY FLUCTUATION, ZERO-VALUE
LYAPUNOV EXPONENTS, AND LYAPUNOV MODES

In this appendix we address in detail the issue of the qual-
ity of the zero-value Lyapunov exponents obtained in the
numerical simulations and their influence on the Lyapunov
modes.

1. Zero-value Lyapunov exponents with large fluctuations

For the one-dimensional Lennard-Jones system studied
here, four zero-value Lyapunov exponents are expected
f10,12,14g. Two of them correspond to momentum conserva-
tion and translational invariance in space. The other two cor-
respond to energy conservation and translational invariance
in time. Numerical simulations show that the two corre-
sponding to space translational invariance and momentum
conservation are very close to zero since these properties are
preserved exactly during the numerical integration of the
system dynamics. The Lyapunov exponentls100d shown in
Fig. 3 sandls101d not shown for symmetry reasonsd belongs
to this pair. The other pair of Lyapunov exponentssls99d and
ls102dd corresponding to the energy conservation and the
translational invariance in time deviate from zero to a larger
extent. This is due to numerical errors in the simulation of
the system and its tangent space dynamics. As we discussed
already in Sec. III A, the numerical integration of time-
continuous systems on a computer will inevitably introduce
deviations from the exact behavior. The resulting fluctuations
in the total energy or errors in the tangent space dynamics
lead to the observed deviation of this pair of Lyapunov ex-
ponents from zero. Obviously the integration step size used
to generate the data in Fig. 3 is not small enough to discrimi-
nate the LEs which have to be zerosls99d andls102dd and the
nonzero LEs such as the neighboringls97d andls98d. In prin-
ciple, one can bring the values of LEsls99d andls102d closer
to zero by reducing the integration step size and by averag-
ing along a sufficiently long trajectory. Because of the lim-
ited computer capacity, we perform numerical simulations
for a system with a small number of particlessN=5d to sup-
port these statements.

FIG. 21. The standard deviation of the total energyssEd
;ÎŠsE−kEld2

‹ versus the integration step sizeh, where k¯l de-
notes the time average. The parameter settings used here areN=5,
L=20, andT=0.1.
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As can be seen in Fig. 21, the fluctuations in the total
energy decrease gradually with decreasing integration steph.
For such a system, the Lyapunov exponentsls4d and ls7d

correspond to the energy conservation and the time transla-
tional invariance. An example of the Lyapunov spectrum of
this system is shown in Fig. 22. In Fig. 23, we plot the
variation ofls4d with the integration steph. For comparison,
the value ofls3d is plotted in the same figure. The numerical
value ofls3d is nearly constant irrespective of the change in
the integration steph, while the value ofls4d decreases
gradually with decreasingh. This figure shows that by vary-
ing the step sizeh the zero-value LEs can be identified.

In the lower panel of Fig. 22 the quantitys(lsadstGSd)
measuring the fluctuations of the finite-time Lyapunov expo-
nents is shown. It is nearly zerosof the order 10−12d for
Lyapunov exponentsls5d and ls6d which correspond to mo-
mentum conservation and space translational invariance. In
contrast,sslsadd for the other pair of zero-value Lyapunov
exponentsls4d andls7d are of the order 0.1, which is of the
same order as for their nonzero neighborsls3d andls8d. Fur-

thermore, the value of the fluctuation strengths(lsadstGSd) is
nearly independent of the integration steph ssee Fig. 24d.
Extensive numerical simulations show that these large fluc-
tuations in the short-time behavior of the expansion rates
corresponding to the pair of zero-value Lyapunov exponents
associated with the energy conservation is not an artificial
effect but an inherent quality of the soft-potential system
studied. The use of the smoother interaction potentials from
Eqs. s3d and s4d or the use of different integration routines
leads to basically the same results. The Lyapunov spectrum
and the fluctuationsslsadd as a function ofa for a system
with N=40, L=160, andT=0.8 are shown in Fig. 25. Here
the interaction potentialVsrd is of the form as stated in Eq.
s4d and the system is integrated with the fourth-order Runge-
Kutta algorithm. This figure explicitly shows that the validity
of these results is not restricted to small system sizes and that
they are independent of the integration algorithms. Our nu-
merical results for the dynamicXY model f16g using the
Runge-Kutta algorithm show similar large fluctuations for
the short-time Lyapunov exponents corresponding to the en-
ergy conservationf49g. These large fluctuations imply the
necessity of using long enough trajectories for an accurate
determination of thesaveraged Lyapunov exponents corre-
sponding to energy conservation.

These studies show that two factors are crucial for the
quality of the numerical estimation of these zero-value
Lyapunov exponents:s1d a small integration step ands2d a
long enough trajectory for the average of the finite-time
Lyapunov exponents. The former determines the systematic
error of the estimation, i.e., the deviation of its mean from
zero, while the latter determines the statistical error, i.e., the
standard deviation of an ensemble of estimations obtained

FIG. 22. Lyapunov exponentlsad stop paneld and the standard
deviation of the finite-time Lyapunov exponentss(lsadstGSd)
;ÎŠflstGSd−klstGSdlg2

‹ sbottom paneld versus the index of the
Lyapunov exponentsa. The data ofs(lsadstGSd) from simulations
using the fourth Runge-Kutta integrator are also presented for com-
parison.tGS is the period between reorthogonalizations of the offset
vectors and heretGS=400h. The integration step used ish=0.002.
The length of the trajectory used for time averaging ist0=1.28
31010h.

FIG. 23. The values of the exponentsls3d and ls4d versus the
integration step sizeh. Here the reorthogonalization period is fixed
at tGS=0.8 and sufficient long trajectories are used for averaging in
order to achieve a good convergence of the data gotten. Other pa-
rameters used here are the same as in Fig. 21.

FIG. 24. Fluctuation strengths(lsadstGSd) of the short-time
Lyapunov exponentls4dstGSd versus the integration step sizeh.
Other parameters used here are the same as in Fig. 22.

FIG. 25. lsad and s(lsadstGSd) for a system withN=40, L
=160, andT=0.8. The interaction potential is of the form stated in
Eq. s4d. The system is integrated with the fourth-order Runge-Kutta
algorithm.
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under the same conditions. Now we discuss what is meant by
the phrase “long enough trajectory.” Let us denote the esti-
mated value of a Lyapunov exponent from a trajectory of
length t integrated with the step sizeh as lst ,hd. A neces-
sary condition for a good estimation iss(lsh,td)øL0shd
where s(lsh,td) is the standard deviation oflsh,td and
L0shd; limt→+`lsh,td is the asymptotic value of this zero-
value Lyapunov exponent for the integration step sizeh. The
quantitys(lsh,td) is related tos(lsh,tGSd) and can be ap-
proximated ass(lsh,td),st /tGSd−gs(lsh,tGSd) whereg is
a positive constant typically of the order1

2. The indepen-
dence ofs(lsh,tGSd) for smallh as shown in Fig. 24 implies
that s(lsh,td) scales asst /tGSd−g. The decreasing ofls4d

with decreasingh as shown in Fig. 23 suggests thatL0shd
,hh where h is a positive constant. This amounts to an
estimation of the minimal lengtht0 of the trajectory needed
for a given integration step sizeh ast0=const3h−h/g. This
implies that an improvement of the estimation of the zero-
value Lyapunov exponent with decreasing step sizeh as
shown in Fig. 24 is possible under the condition that the
averaging period is extendedsnot smaller thanh−h/gd at the
same time. Both a smaller integration step and a longer tra-
jectory are necessary conditions for improvement in the es-
timation of these zero-value Lyapunov exponents. Both mea-
sures lead to a fast increase of computational costs. These
considerations explicitly provide a means of improving the
accuracy of the Lyapunov exponentls99d in Fig. 3.

Influence of the quality of the zero-value Lyapunov exponent
on the Lyapunov modes

While the quality of the zero-value Lyapunov exponents
corresponding to energy conservation is quite sensitive to the

details of the numerical integrationsstep size, trajectory
lengthd, the characteristic features of the hydrodynamic
Lyapunov modes are quite robust. This fact is exemplified by
changing the potential to the Stoddard-Ford form of Eq.s3d.
Comparing Fig. 3 with Fig. 26 demonstrates the change in
the value ofls99d, in this case to an improved estimate. On
the other hand the corresponding Lyapunov vector turns out
to be qualitatively the same as before. The simulations for a
system with the interaction potential of Eq.s4d give similar
results as we present below.

We emphasize first that the Lyapunov spectrum of a sys-
tem with Stoddard-Ford Lennard-Jones potentialfEq. s3dg, as
shown in Fig. 26, also does not exhibit the step structures
observed in hard-core systems. Secondly, we depict in Fig.

FIG. 26. Lyapunov spectrum for a system with the Stoddard-
Ford Lennard-Jones potential in Eq.s3d. Apart from the choice of
the potential cutoff all the parameters are the same as in Fig. 3.

FIG. 27. The part-time-averaged value ofls99d versus the aver-
aging time.

FIG. 28. The time evolution of the peak wave numberk* supper
paneld and the instantaneous spectral entropyHsstd slower paneld for
the Lyapunov vector no. 95 of the system used in Fig. 26. The
similarity to Fig. 8 is obvious.

FIG. 29. sColor onlined The contour plot of the spectrumSuu
sad

supper paneld and the dispersion relationlsad versuskmax slower
paneld for the system shown in Fig. 26. See Figs. 11 and 12 for
similar results of the model with the interaction potential stated in
Eq. s2d.
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27 the convergence ofls99d with increasing averaging time. It
shows that the numerically estimated value of this Lyapunov
exponent behaves irregularly as a function of the averaging
time and decreases only in the mean. This confirms the need
for increasing the averaging time to obtain an accurate esti-
mate of the Lyapunov exponentls99d but that one can get
very good estimates also accidentally.

The peak valuek* and the spectral entropyHsstd of the
instantaneous spectrumsuu

sadskd for Lyapunov vector no. 95 of
the above system are plotted against time in Fig. 28. The
intermittent behavior of both quantities is similar to the one
shown in Fig. 8.

The contour plot of the spectrumSuu
sad is shown in Fig. 29.

The ridge structure in the small-k and -l regime indicates the
existence of the hydrodynamic Lyapunov modes. Thel-k
dispersion relation extracted is quite close to a linear one.
The similarity to Figs. 11 and 12 is obvious.

Our results above show that the Lyapunov spectrum, es-
pecially the pair of zero-value Lyapunov exponents corre-
sponding to energy conservation, is sensitive to the details of
the models considered, while the behavior of the Lyapunov
vectors is quite robust. At least, the existence of hydrody-
namic Lyapunov modes is universal irrespective of these
changes.
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