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Lyapunov instabilities of Lennard-Jones fluids
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Recent work on many-particle systems reveals the existence of regular collective perturbations correspond-
ing to the smallest positive Lyapunov exponefitEs), called hydrodynamic Lyapunov modes. Until now,
however, these modes have been found only for hard-core systems. Here we report results on Lyapunov spectra
and Lyapunov vector.Vs) for Lennard-Jones fluids. By considering the Fourier transform of the coordinate
fluctuation density(@(x,1), it is found that the LVs with. =0 are highly dominated by a few components with
low wave numbers. These numerical results provide strong evidence that hydrodynamic Lyapunov modes do
exist in soft-potential systems, although the collective Lyapunov modes are more vague than in hard-core
systems. In studying the density and temperature dependence of these modes, it is found that, when the value
of the Lyapunov exponemnx® is plotted as function of the dominant wave numkgg, of the corresponding
LV, all data from simulations with different densities and temperatures collapse onto a single curve. This shows
that the dispersion relation'® vs kg, for hydrodynamical Lyapunov modes appears to be universal for the
low-density cases studied here. Despite the wavelike character of the LVs, no steplike structure exists in the
Lyapunov spectrum of the systems studied here, in contrast to the hard-core case. Further numerical simula-
tions show that the finite-time LEs fluctuate strongly. We have also investigated localization features of LVs
and propose a length scale to characterize the Hamiltonian spatiotemporal chaotic states.
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[. INTRODUCTION instability of trajectories, and macroscopic transport proper-
o ) ties. A lot of work [9-16] has been done to identify this

One of the most successful theories in modern science ishenomenon and to find its origin. It is commonly thought
statistical mechanics, which allows one to understand thehat the appearance of these modes is due to the conservation
macroscopic(thermodynamit properties of matter from a of certain quantities in the systems studi@f-14. A natural
statistical analysis of the microscodimechanicgl behavior consequence of this expectation is that the appearance of
of the constituent particles. In spite of this, using certainsuch modes would not be an exclusive feature of hard-core
probabilistic assumptions such as BoltzmarBtesszahlan- systems and should be generic to a large class of Hamil-
satz renders the lack of a firm foundation of this theory, tonian systems. However, until now, these modes have been
especially for nonequilibrium statistical mechanics. Fortu-identified only in computer simulations of hard-core systems
nately, the concept of chaotic dynamics developed in thé9,10,16. . .
20th century{1] is a good candidate for coping with these  In this work, we report results about a one-dimensional
difficulties. Instead of the probabilistic assumptions, the dy-(1D) system with Lennard-Jones interaction. Although the
namical instability of trajectories can provide the necessarydentification of regular hydrodynamic Lyapunov modes by

fast loss of time correlations, ergodicity, mixing, and otherth® naked eye is difficult for soft-potential systefs], our
dynamical randomnedg]. It is generally expected that dy- technique based on a spectral analysis of Lyapunov vectors
namical instability is at the origin of macroscopic transport(-VS) Shows strong evidence that hydrodynamic Lyapunov

phenomena and that one can find certain connections b '?ndpeesractigrg)c(:lr?;rzgggliss gﬁi;é;-?ne d'g{gfler}%ee 3{3‘;2?;3’1 ?Qg_
tween them. In the past decade, some beautiful theories ibn for hydrodynamic Lyapunov modes, the dominant wave

this direction have already been developed. Examples are tr?'ﬁjmber as a function of the corresponding LEs, is found to

escape-rate formalism by Gaspard and Nicgigl] and the 1,56 3 quite weak dependence on the densities and tempera-
Gaussian thermostat method due to Nosé, Hoover, Evanﬁjres used.

Morriss, and other$5-7], where the Lyapunov exponents gy rthermore we study the localization properties of LVs.
were related to certain transport coefficients. Based on the extensive nature of LVs with- 0, we propose
Very recently, molecular dynamics simulations on hard-5 |ength scale to characterize a spatiotemporal chaotic
core systems revealed the existence of regular collective pefyamjitonian system. It is expected that this quantity will be
turbations corresponding to the smallest positive Lyapunoy;sefy| for the task of distinguishing different spatiotemporal
exponentsLEs), named hydrodynamic Lyapunov mod@3.  chaotic states and characterizing transitions among them.

This opens a possible way for a connection betweeryig s an important open question in the study of spatiotem-
Lyapunov vectors, quantities characterizing the dynam|cabora| chaog17].

Il. MODEL

*Electronic address: hongliu.yang@physik.tu-chemnitz.de In this study we use a 1D Lennard-Jones system with
"Electronic address: radons@physik.tu-chemnitz.de Hamiltonian
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with Vc:4€[(0/rc)12‘(0/rc)6]- The potential is truncated in FIG. 1._Time evolution of temperatufB={mv?) and total en-
order to lower the computational burden. Note, however, thaf'dy- The inset shows that the total enefgjias small short-term
due to the truncation the fordgr)=-V'(r) and its deriva- fluctuations but no long-term drift. Detailed calculation shows that

. , . . . . the standard deviation of the total energyE)=4x10". The
tive f’(r) are not continuous at the truncation poigt This !

- . .. . . . nearly constant state variables show that the system has already
will introduce additional noise in the numerical integration

. . . reached a stationary state. The parameter settings used hexe are
of the equation of motion and the corresponding tangent dy= 149 | =1000. andT=0.2.

namics. For this reason, two other potentials with continuous
derivatives at the truncation point were also simulated to
check the influence on the results given below. The first one
was proposed by Stoddard and Fotd]. It is continuous in A. The stationary state

the force at the truncation point, In the numerical calculation of the Lyapunov instability of
a many-body systeni22], there are some important time
4E[<g>12_(g>6} ‘e <L>2+V o=t scales to be kept in mind: the first one is the time for a
V(r) = r r 2 re ¢ Te many-body system to relax to a stationary state, which guar-
antees that quantities measured afterward are not for a tran-
sient state; the second is the time for the set of Lyapunov
() vectors to relax to their correct orientations since offset vec-
tors are usually selected randomly at the beginning; the third
with  c,=4€6(a/r)*?-3(a/r,)®] and V.=4d-7(a/r))*? s the time used to count LEs and LVs, which should be long
+4(a/ry)®]. The second potential used is continuous in addi-enough to ensure that the trajectory wanders all over the
tion in the first derivative of the force and it is of the form attractor. For a many-body system like the one studied here,
these time scales can be extremely long due to the large
[ o\2 [ 5\6 r\4 r\2 number of degrees of freedom involvgzi3,24].
V(r) =4e (—) - (—) } +c4<—> +c2(—) +V, (4) The time evolution of state variables like temperatiire
r r Fe Fe and total energy for a case with parameter settiNgs.00,

] L=1000, andT=0.2 is shown in Fig. 1. In the beginning of
for r=<r,, and V(r)=0 otherwise. The constants are gyr molecular dynamics simulation, particles are placed ran-
given by c,=4¢[-21(a/ro)?+6(0/r)®], c,=4€[48(a/r)'®>  domly in the interval0,L]. Their velocities are chosen ran-
—15(a/r)®], andV =4[ -28(0"/r)'?+ 10(o/1)°]. Using the  domly from a Boltzmann distribution. In order to equilibrate
same integration step size, the latter two potenfiéitys.(3)  the system, it is coupled to a stochastic heat bath with given
and (4)] typically yield better numerical accuracy than the temperatureT, i.e., every 500 steps the velocities of the par-
first one[Eq. (2)]. This will somewnhat influence the quality ticles are replaced with velocities that were drawn from a
of the zero-value Lyapunov exponents. The qualitative beBoltzmann distribution corresponding to that temperature.
haviors of the Lyapunov modes, however, turn out to be notrhis was done for a time period of length, which is longer
affected by the above modifications of the potenti&e the than the relaxation time of the system at this temperature.
Appendix. After the equilibration procedure, the system is allowed to

The system is integrated using the velocity form of theevolve with constant total energy, i.e., without the heat bath,
Verlet algorithm with periodic boundary conditiof9]. In  for a time period of the same lengthtag in order to be sure
our simulations, we sei=1, 0=1, e=1, andr,=2.5. Al that the system is already in a stationary state at given tem-
results are given in reduced units, i.e., length in unitsrof  peratureT. In Fig. 1, the period with the thermal bath is
energy in units ofe, and time in units o{mo?/48¢)*2. The  omitted and only the part of the evolution with constant total
time step used in the molecular dynamics simulatiohis energy is shown. The nearly constant value of temperature
=0.008. The standard Gram-Schmidt reorthonormalizatiormeans that the system has already reached a stationary state
algorithm [20,21] is used to calculate the local dynamical and one can start the calculation of the Lyapunov instability
instability of the systems studied. The time interval for peri-of the system. In the inset of Fig. 1, one can see that there
odic reorthonormalization is 80to 10th. Throughout this  exist short-term fluctuations in the total energy. The energy
paper, the particle number typically is denoted My the fluctuations are mainly due to the discretization of the evo-
length of the system bl, and the temperature bl lution equations for the numerical integration. In general, the

IIl. NUMERICAL RESULTS

0 otherwise,
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FIG. 3. Lyapunov spectrum for the state shown in Fig. 2. En-
largement of the part in the regimé” ~0 is shown in the inset. It
is the result of an average over 58 samples with different initial
conditions and for each sample the averaging period>sl@h.
Here no stepwise structure exists, in contrast to the case of hard-

core systems. This is a typical result for our soft-potential system.

FIG. 2. (a) Snapshot of the particle positions vs index of
particlesi and(b) pair distribution functionG(r) obtained from the
distances between all particlgsipper pangl and from nearest
neighbors onlylower panel for the stationary state shown in Fig. 1
[see[25] for the definition ofG(r)]. The sharp peaks iG(r) imply
that the state is a broken-chain state.

measure the expansion or contraction rate of offset vectors in
discretized equations can be regarded as resulting from @ertain directions. Averaging their logarithms for a period
periodically kicked system, implying that the evolution is no gives what are callefinite-time Lyapunov exponents. The
longer autonomous. The amplitude of the numerical errofimit A\=\__,,.. is what is usually called theyapunov expo-
caused by this effect in general depends on the integrationent The value of a finite-time LR ; depends on the trajec-
algorithm used. Our preference for the standard velocity Vertory segment where it is calculated and usually it fluctuates
let algorithm, although it is of lower order than the typical as the segment moves along the trajectory. Howavyeris
fourth-order Runge-Kutta algorithm, is due to its property oftime independent and unique for an ergodic system. In this
preserving time reversibility and phase space volumes. Thesense)\... is a global quantity characterizing the system at-
properties ensure that the Verlet algorithm shows little long+ractor, while the finite-time LEs are local quantities which
term drift in the total energy although its short-time fluctua-contain more detailed information about the dynamics. The
tions may be larger than for Runge-Kutta integraf@®. An  offset vectors just after reorthonormalization are called
additional difficulty faced in the numerical integration is the Lyapunov vectorsThese are local quantities characterizing
discontinuity in the derivatives of the potential caused by itsthe system attractor similar to the finite-time LEs.
truncation. Here the flowing in and out of the interaction Another point to be noted is that Lyapunov vectors ob-
range of particles leads to additional numerical noise. In gentained using Benettiret al's method are always mutually
eral, decreasing the integration step size can reduce the effemtthogonal while the local unstable and stable directions are
of numerical errors and improve the accuracy of the energyot orthogonal in general. In this sense, these are two differ-
conservation. This is also confirmed by our numerical simu-ent sets of vectors. They are also different from the ones in
lations (see the Appendix A smaller step size, however, the multiplicative ergodic theorerfi28]. However, recent
means that more integration steps are needed to simulatestudy shows that they are indirectly related to the set of Os-
fixed length trajectory. Limited by the capacity of our com- eledec vector$29]. Lyapunov vectors obtained in the stan-
puters, we are forced to select an integration step size thatard way can at least represent the most unstable direction in
minimizes the total error resulting on one hand from tooa certain subspace and they already contain a lot of important
short trajectories and on the other hand from the finite stemformation about the dynamical instability in tangent space.
size. We will rely on them to continue our study in this paper.

The pair distribution functiorG(r) shown in Fig. 2 tells
us that the stationary state fo=0.2 is a broken-chain state
with short-range order. This is generic for a 1D Lennard-
Jones system with not too high dendi7].

C. Finite-time Lyapunov exponents with wild
fluctuations

The Lyapunov spectrum for the case wib=100, L
=1000, andT=0.2 is shown in Fig. 3. Here only half of the
spectrum is shown since all LEs of Hamiltonian systems

The standard method invented by Benetttral.[20] and come in pairs according to the conjugate-pairing rule
Shimada and Nagashinf21] is the most efficient one to [30,31. From the enlargement shown in the inset of Fig. 3
calculate the Lyapunov exponents and Lyapunov vectors dbr the part neak® =0, one cannot see any stepwise struc-
large systems. Herll X N linearized equations foN offset  ture in the Lyapunov spectrum in contrast to the case of
vectors in tangent space were integrated simultaneously withard-core systemd4.0]. This is the typical result obtained for
the set ofN nonlinear equations for the reference trajectory.our soft-potential system.

Offset vectors were periodically reorthonormalized using the From Fig. 3 it is tempting to conclude that there is only
Gram-Schmidt algorithm. The resulting rescaling factorsone zero-value Lyapunov exponent in the part of the spec-

B. Benettin method using Gram-Schmidt orthogonalization
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FIG. 5. Normalized Lyapunov exponents?/\ with L=200,

FIG. .4' Distribution of_the finite-time Lyapt_mo_v expone?dﬁ 400, 1000, 2000, and 4000, respectively. The Lyapunov spectrum
whereris equal to the period of reorthonormalization and the index . . .
becomes more and more bent as the particle densiti/L is

of LEs « is equal to 90, 94, and 98, respectively. The strong fluc- S . .

: (@) . . decreased. This implies the separation of two time scales. Nere
tuations ofA ™ are one of the possible reasons for the dlsappearancgloo andT=0.2
of the stepwise structures in the Lyapunov spectrum. The parameter -

settings used here a=100,L=1000, andT=0.2. ) ) ) ) )
observed in the time evolution of the spatial Fourier trans-

trum shown. This seems to contradict the expectation thaform of LVs (see Sec. IIl E
there should be two due to the conservation lai&12,14.

Our detailed studies of these Lyapunov exponents and the
corresponding Lyapunov vectors show that there are indeed
four zero-value Lyapunov exponerita/o in the part shown

The point is that two of themiA®® and A1°2) are more We studied also the influence of the particle density on the
sensitive to numerical errors than the other ¢ and  Lyapunov spectrum by increasing the length of the system
A1) The two exponents corresponding to translational inwith the particle numbeN kept fixed. As can be seen in Fig.
variance in space and momentum conservation are closer fg the Lyapunov spectrum becomes more and more bent with
zero since these properties are preserved exactly in the nincreasingL. For the case oE=4000, the spectrum can al-
merical integration routine. The other pair of Lyapunov ex-ready be unambiguously divided into two regimes: In the
ponents, which show relatively large deviations from zero,upper regime, Lyapunov exponents decrease more quickly
correspond to energy conservation and translational invariwith increasing index than in the lower regime. Such a bend-
ance in time. These properties are not preserved exactly bpg of the Lyapunov spectrum was related to the separation
the numerical discretization of the governing equations obf two time scales in dilute particle systerf82]. Our con-
motion. Correspondingly, fluctuations in the total energy argecture is that one is the time of local collision events, and
introduced by the numerical integratidgsee Fig. 1 and in  the other is due to the collective motion of the particles.
consequence lead to the observed deviation from zero of thiSupport for this conjecture comes from our results presented
pair of Lyapunov exponents. In principle, one can improvein Sec. Il E 4. For a system with high density, the collisions
the results for this pair of Lyapunov exponerii®., bring are so frequent that there are strong correlations between
them closer to zepoby reducing the integration step size. consecutive collisions and one can no longer separate them
The main limitation comes from the capacity of the compu-from each other. The collisions themselves contribute to the
tational resource because one needs to integrate over vegpllective motion of the system. Therefore no time scale
long time periods. In order to support this point of view we separation happens here and the LEs decrease gradually.
performed extensive numerical simulations for small systems
with few particles. The details of this analysis are provided
in the Appendix. Our numerical results show also that the
quality of this pair of LEs is sensitive to the details of the 1. Coordinate fluctuation density

integration scheme, while the behavior of the Lyapunov  angther quantity used to characterize the local instability

modes is qune'robugt. . i . . of trajectories is the Lyapunov vectéF(®, which represents
The fluctuations in local instabilities of trajectories are expanding or contracting directions in tangent space. In the

demonstrated by the distribution of finite-time LEs. In Fig. 4 g4 of hard-core systems, Posch and co-workers found that

such d|str|but|on§ for some LE? n _the regiie-0 are pre- e coordinate parts of the Lyapunov vectors corresponding

sented. Fluctuations of the finite-time Lyapunov exponentsy \ ~o are of regular wavelike charactg8—10]. They are

are quite large compared with t2he difference between theifeferred to adydrodynamic Lyapunov modasfe are search-

mean values, i.e.gr()\(f))leo\(;’) >—()\<f)>2>|)\(“>—)\(“+1)|. ing here for the counterpart of these modes in our soft-

Here(:--) means the time average. The strong fluctuation irpotential system.

local instabilities is one of the possible reasons for the dis- Remember that each of the LVs consists of two parts: the

appearance of the stepwise structures in the Lyapunov spedisplacements; in coordinate space angb; in momentum

tra. It could also cause the mixing of nearby Lyapunov vec-space. In past studies of hydrodynamic Lyapunov modes in

tors. The mixing may be at the origin of the intermittency hard-core systems, only the coordinate p&twas consid-

D. Bending of Lyapunov spectrum with decreasing particle
density

E. Spatial structure of LVs with A(®=0
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FIG. 6. u@(x,t) for LVs with index =1, 10, 90, and 95, re- FIG. 7. Time evolution oli®¥(x,t) for parameters as in Fig. 6.
spectively.u@(x,t) is visualized by plotting vertically the fluctua- NO clear wave structure can be detected.
tions b)(i(“) at the corresponding positiomsalong thex axis. Notice
that the LVs witha=1 and 10 are more localized while those with  In previous studies, in order to make the wave structure
«=90 and 95 are more distributed. The parameter settings used heneore obvious, certain smoothing procedures in time or space
areN=100,L=1000, andr=0.2. were applied to the Lyapunov vectors. For @ Hard-core

system with only a few particles, this procedure has been

ered. This is due to an interesting feature of hydrodynamigéhown to be quite useful in identifying the existence of hy-
Lyapunov modes found in Refl12] which says that the drodynamic Lyapunov modd45]. The success of this strat-
angles between the coordinate part and the momentum pa@gy relies on the fact that some of the hydrodynamic
are always small, i.e., the two vectors are nearly parallellyapunov modegtransverse modgsof hard-core systems
Therefore, it is already sufficient to use ony, for studying ~ are stationary8]. Therefore, time averaging can indeed sup-
8. For our soft-potential system, we find that the anglesPress the noise component and make the long-wavelength
between the coordinate part and the momentum part are ndodes more significant. For a soft-potential system, all the
longer as small as in the hard-core systems. However, wkyapunov vectors are not stationary due to the random mix-
will still follow the tradition of studying the coordinate part ing among them. In particular, for our one-dimensional sys-
of the LV first and come to the momentum part afterward. tem studied here, no transverse modes but only longitudinal

Analogous to the definition of microscopic densities in Lyapunov modes exist. In consequence of this, the smooth-
hydrodynamicg25], we define a quantity called trmordi-  ing procedure is no longer helpful for detecting the hidden
nate fluctuation densityCFD) regular modes and can even damage thé6]. Here we
apply the spatial Fourier transformation to the instantaneous
quantity u”(x,t) instead. The algorithm offered especially
for unevenly distributed data is very suitable for our case
[38]. Furthermore, we take the long-time averdged en-

Profiles ofu(®(x,t) for some typical LVs of the Lennard- semble averageof the instantaneous spatial Fourier spec-
Jones system are presented in Fig. 6. It can be seen th&tim
u@(x,t)’s for LVs corresponding to the largest Lyapunov " o
exponents are highly localized, for exampl€’(x,t) and Sy (k) = [t (1) (7)
u®9(x,t), while those for L\{,q an_d LVgs are more distrib- since it is expected that iéu“>(k)5<s(“)(k,t)> the contribu-
uted. The study of the localization of LYthe LV corre- Y uu

. ) ; tion of stochastic fluctuations will be averaged out while the
sponding to the largest Lyapunov exponent, is of long hIStor34nformation about the collective modes will be left and ac-

g?rﬁaiiz&?s?o?nladeAtaty(;asorr](\a/leaéggé gl'g\}\’/et?eg\iet%tee(;gcnass_'ncumulated. The following results show that this technique is
sion on this point to Sec. Il E Thé temporal evolution of quite successful in detecting the hidden collective modes.
:95) nis pointto-sec. . P voltion The time evolution of the instantaneous spatial Fourier
U™(x,1) is shown in Fig. 7 in order to make the possibly s ectrums(%)(k t) for Lyapunov vector no. 95 is shown in
existing wavelike structure more evident. A wave structure, b uu 2 yap o i -
Fig. 8 as an example. Two quantities are recorded with in-

Eg\év:&/eer;/ecannot unambiguously be detected here with thgreasing time. One is the peak wave numbkemwhich marks

the position of the highest peak in the spectm;ﬁﬁ(k,t) (see
Fig. 9. The other is the spectral entropix(t) [39], which
measures the distribution property of the spectﬂg‘ﬁ{k,t).
It is defined as

N
u@(x,t) = 2 X VSX=X). (5)

i=1

2. Spatial power spectrum of CFD and intermittency in its time
evolution
Now we turn to the spatial Fourier transform wf/(x, t),
which reads Hy(t) = = > si9(k;, t)In 8.9 (k. t). (8)
k:
N 1
) = J u@(x,t)exp(~ ik - x)dx= 2 X ex-ik-x(D]. A smaller value oH(t) means that the spectrusff/(k,t) is
=1 highly concentrated on a few valueslofi.e., these compo-
(6) nents dominate the behavior of the LV. Both of these quan-
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FIG. 8. Intermittent behavior of the peak wave numkeand FIG. 10. Time-averaged spectral entrofiys(t)) vs index of
spectral entropy(t) for the spatial Fourier spectrum af®d(x, t). LVs. The gradual decrease @l (t)) from a=0 means that LVs

The parameter settings used here [dre100,L=1000, andT=0.2. corresponding to smaller positive LEs are more localized in Fourier
space, i.e., they have more wavelike character, than those corre-

tities behave intermittently as shown in Fig. 8. Large inter-sponding to larger LEs. The parameter settings used her&are

vals of nearly constant low valugsff state are interrupted =100,L=1000, andT=0.2.

by short period of burstéon stat¢ where they experience

Iél_rgegvalllues. [l))etalls of tﬁ/p'cﬁl onﬁand off_stztes are Sg'%wnr']'%ystems were provided to support their conjecture. We expect
I ig. 9. It can be seen that the o s:]ate Ihs ommalie Iyt fhat the proposed mechanism, possibly in a modified form,
ow-wave-number qomponen(see the sharp peak at low o4 \works for the soft-potential system studied here. The
wave numbeks) while the on state is more noisy and there strong mixing among Lyapunov modes in our system, how-
are no significant dominant components. This intermittency,, .o “makes the dynamics of the modes more complex than
in the time evolution of the spatial Fourier spectrum of LVs; thé hard-core systems. If only mixing between the modes
IS a typ_lca_l feature of soft-potential systems. It is conjectureq yq same Lp pair were possible as in hard-core systems, a
that this is a consequence of the miXing of_r_learby I‘Vsregular periodic oscillation instead of the irregular intermit-
caused by the wild fluctuations of local instabilities. Due totency behavior irk. would be expected. Therefore we think
the mutual interaction among modes, the hydr0dyn"’““"‘Rthat the observed intermittency in the dynamics of the

:T]?/apunO\I/ mﬁdeg n so'ft—pl)_otentlal systems aref) only of f'n'.teLyapunov modes is the combined effect of the rotation and
ifetime. In the dynamic Lyapunov structure function esti- 1 inite lifetime of the modes.

mated, the peak representing the propagatimmgscillating In Fig. 10, the time-averaged spectral entrdpi(t)) is

Lyapunov modes is of finite W'dth' This is a support of our lotted against the index of the LVs. It increases gradually as
conjecture that the. hydrod_ynamlc Lyapunov modes are o he index decreases frohM—2. This means that LVs corre-
finite lifetime. Details of this study will be presented else- sponding to smaller positive LEs are more localized in Fou-

where[40]. . o rier space, i.e., they have more wavelike character, than those
Recently Eckmaneet al. conjectured that the longitudinal .
gorrespondlng to larger LEs.

Lyapunov modes came in pairs with the so-called P mode
[41]. The dynamics of the Lyapunov modes were explained
as a rotation with constant angular velocity in the subspace 3. Dispersion relation of hydrodynamic Lyapunov modes

spanned by a certain LP pair. Numerical results for hard-core _ _ _ _
Now we consider the time-averaged spatial Fourier spec-

a) trum %‘L?(k) of LVs. Two cases with.=1000 and 2000 are
gS;&?E m ‘ ' l ' ‘ ' “ ' i shown in Fig. 11. It is not hard to recognize the sharp peak at
% 300 60 . 900 1200 1500 A=0 in the contour plot of the spectrum. In increasing the
0o Off S (=4) _ b) | OnStae=l76) __ c) Lyapunov. exponents, the peak shifts to the larger-wave-
o1l 1 | . C number side. A dashed line is plotted to show how the wave
én?? . 041 ) number of the peak,,, changes with\(*). To further dem-
POy | e s IO onstrate this point, in Fig. 12, the value of the Lyapunov
0 200 490,00 500 1007 200 490,50 00 100 exponentA@ is plotted versusk,., Of the corresponding
- 30» T 'd) 30 T T T T 5y : - . max .
= 0} "k, 1 20} K LVs. We call this thedispersion relatiorof the hydrodynami-
3:; 10F 1 1o N cal Lyapunov modes. The numerical fitting of the data shows
% 0.020.040.06 008 0.1 opss ‘63‘:1‘(636‘3.0?0.1 that forx =0, \'® ~ k7 ., with the exponenty~1.2. We con-

jecture that a linear dispersion relatiof® ~ kn., may be
obtained as the thermodynamic limit is approached and the
deviation from the linear function of the data shown in Fig.
12 is due to finite-size effects.

FIG. 9. (a) Variation of the peak wave numbler with time. (b),
(c) Two typical snapshots of Ly, off and on states at=44 and
176, respectivelyd),(e) Their spatial Fourier transforms. The spec-

trum for the off state has a sharp peak at srkalvhile that for the In prder to show that.the peak $ﬁ]‘3(k).is not a result of '
on state has no dominant peak. The parameter settings used here Hte highly regular packing of particles in the broken-chain
N=100,L=1000, andT=0.2. state, the static structure functipas]
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sfz)(k,x) 0.

uu
—
(=3
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FIG. 13. (Top panel The wave numbek,,, Of the highest peak
in the time-averaged spatial Fourier spectrum of LVsliddle
pane) The height Sfj‘ij)(kmaQ of the highest peak in the time-
averaged spectruniBottom panel The spectral entropkis for the
averaged spectrurﬁff;)(k). The sudden jump irky,,, implies the
separation of time scales. The parameter settings used hel are
=100,L=1000, andT=0.2.

regular packing of particles causes the formation of a peak at
k/27=0.9 in Sk). This corresponds to a tiny peak at the
samek value in ‘lj)(k) for those LVs withA =0. These facts
show clearly that the collective modes observed in LVs are
not due to the regular packing of particles.
To further demonstrate the properties of these modes, in
FIG. 11. (Color onling Contour plot of the spectru§®(k) for ~ Fi9- 13,kmaxiS plotted versus the index of the LVs. As can be
L=1000 and 2000. There is a sharp peakat0 and\=0. To ~ S€en, for LVs with =0, i.e., witha=N, the value okyais
guide eyes, a dashed line is plotted to show how the peak wav@uite small(see the enlargement in Fig.)1&or example, for
numberk,,,, changes with the variation of. The sudden jump in  @=96, 97, and 98k,,,=27/L, which is the smallest nonzero
kmax is Marked with an arrow. In total 58 samples for the case ofwave number allowed by the periodic boundary conditions
L=1000(ten forL=2000 are used for averaging for each period of used. Another point to be noticed is the step structure in
4x10°h. HereT=0.2 andN=100. plotting k. @S @ function ofx. This is similar to the degen-
eration of wave numbers found in the hard-core case, al-
though the steps here are not so regular. In the middle panel
S(k) = f G(r)exp(~ ikr)dr (9)  of Fig. 13, the heigh§” (ks of the highest peak in the
time-averaged spatial spectrum is plotted as a function of the
index of the LVs. Apart from LVs no. 99 and no. 1@0ot
for the caseL=2000 is plotted in the same figure §§/(k),  shown for the conserved quantities{” (kna) decreases
whereG(r) is the pair correlation function shown in Fig. 2. It gradually in decreasing the index fra+2. Similarly to the
can be seen th&(k) is nearly constant in the regimle=0,  definition of the spectral entropy for the instantaneous spec-

the place where a sharp peak was observeﬂﬁ}ﬂk). The  trum s(‘ff(k,t) in Eqg. (8), one can also define a spectral en-
“)(k). The spectral en-

u
tropy Hg for the averaged spectruBﬁ,u
10'F ' ' ' E tropy Hg for Sfflf(k) is presented in the bottom panel of Fig.

13. It possesses a minimum at98 where the Lyapunov

-3 =25 -2 -15 -1 -0.5 0
log, (k/2m)

S o 0.009 ‘ ; : .
C ] Q 0.006f .
I 1 0,003 .
10'35‘ 3 P L L
-4 el 1l PR | 10
10,07 10° 10” 10" 10’
K9 2n
FIG. 12. The Lyapunov exponent® is plotted as function of . .
the wave numbek,, of the highest peak in the time-averaged (gindex of LVu
spatial Fourier spectrum of LVs. The dashed line is of the form
)\<“)~k#§x The parameter settings used here Mrel00, L=1000, FIG. 14. Enlargement of Fig. 13 for the part in the regime
andT=0.2. =N.
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FIG. 15. The Lyapunov spectru'® (top panel, d®\/da?
(middle pane), andky,,x (bottom panélvs the indexa. The param-
eter settings used here ade=100,L=1000, andr=0.2.

FIG. 16. Same as top panel of Fig. 8, but with different density
p=(a) 1/2,(b) 1/4, and(c) 1/8, respectively. Her&d=0.2 and the
particle numbeiN=100.

exponent is the smallest positive one. According to the defitinear dispersion. Since our simulations here are limited to
nition of the spectral entropy, the minimum means that thecases with relatively low density, the possibility of a density
spectrum of LV no. 98 is most significantly dominated by adependence of the dispersion relation cannot be excluded for
few components. high densities.

All of our results shown above give strong evidence that Another feature of Fig. 17bottom panaelis that the sud-
the Lyapunov vectors corresponding to the smallest positivglen jump ink,, disappears as the system densitiL is
LEs in our 1D Lennard-Jones system are highly dominateghcreased. This is consistent with our above discussion that
by a few components with small wave numbers, i.e., they argne separation of time scales is significant only in dilute sys-
similar to the hydrodynamic Lyapunov modes found in hardtems.
core systems. The wavelike character becomes weaker and
weaker as the value of the LE is increased gradually from
zero.

6. Dynamics of the momentum part

Now we turn to investigations of the spatial Fourier spec-
trum of the momentum part of LVs. Unfortunately, all the

4. Separation of time scales spectra are more or less homogeneously distributed on all

Another interesting point in Fig. 13 is the sudden jump in
Kmax &t @~ 26 which divides the whole set of LVs into two
groups. It is believed that this sudden jump is related to the
bending of the LE spectrum and the separation of time scales
in a dilute system. As shown in Fig. 15, the sudden jump is
in the regime where the LE spectrum is most strongly bent,
although it is not at the exact place whef(®/da? expe-
riences the maximal value. Further work is needed to reveal
the underlying connection between these phenomena.

0.3 p=1/26 T T T
p=1/15

p=1/10
e P20 / p=1/8 T

5. Influence of density and temperature

To study how the change in density influences the behav- 1o = perd T 7
ior of LVs, we increase the length of the system from 200 —p=1/6T=0.2 E
to 4000 with the particle numbey kept fixed at 100. From _f’;}ﬁ(f?’:ﬁz 3
the time evolution ok. shown in Fig. 16, one sees that, in 102F g:}ggtgj gg& -p=1/AT=03 3
increasing the density=N/L, the occurrence of the on state 8, [-e10m02 gF TPl
becomes more frequent, i.e., the domination of low-wave- ST T2 p=1/10T=03
number components is much weaker. The spatial Fourier 107 = @y el
spectra for LVs with LEs in the regimé® =0, however, are BB |
always dominated by certain low-wave-number components 1075 - - : pu__l 2o .
irrespective of the densit{see Fig. 17. 10 10 K 12/2” 10 10

An important point is the collapse of data of dispersion
relations from simulations with various densities and tem-
peratures to a single curysee bottom panel of Fig. 17

FIG. 17. (Color online (Top panel the wave numbek,,,, Of the
highest peak in the time-averaged spatial Fourier spectrum of LVs

This means, for hydrodynamic Lyapunov modes in our sySxg g function of LV index. (Bottom Panélthe Lyapunov exponent

tem, that the dispersion functian,(k) is universal for the

M@ as function ofky,,. Note that in the bottom panel, all data from

particle densities and the system temperatures studied. Fiimulations with different densities and temperatures collapse to a

ting of the data to a power-law functioq, ~k},., gives the

single curve. Fitting of the low-wave-number part to a power-law

value of the exponeny as 1.2+0.1 which is not far from a function\*~k},,, gives y~1.2+0.1. HereN=100 andT=0.2.
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FIG. 18. Time-averaged participation numhgf) vs index of

LVs (upper paneland \(¥ (lower panel. The parameter settings W00 120 10 160 180 200
used here ar&l=100,L=110, andT=1.6.

wave numbers. For all the cases checked, no wavelike struc- FIG: 19 Time-averaged participation numigt’ and p(N_i) VS
ture can be identified as for the coordinate part. One maza:ncl_e numbei. The parameter settings used here lafbl=1.1
wonder why no modelike collective motion is observed in ndT=186.

the momentum part. There are two possibilities. One is that

the momentum part does contain information similar to theare far apart, it is expected thgt is proportional to the
coordinate part but it is too weak to be detected here due tBvO-point correlation length, which measures the spatial dis-
the strong noise. The other is that there is no similarity beorder of the system. A particular fractal dimension, the
tween the two parts at all and regular long-wave-lengthbyapunov dimensiorD,, can be easily obtained using the
modes exist only in the coordinate part. Further work isKaplan-Yorke formalism which relates the Lyapunov dimen-

needed to clarify which one is correct. sion to Lyapunov exponents of the systp#b]. For a Hamil-
tonian system like the one studied here, Lyapunov exponents
F. Localization properties of LVs are paired, i.eA@+\@IN-9=0 due to the symplectic struc-

ture of the systeni30,31]. According to the Kaplan-Yorke
formalism, the Lyapunov dimension for d-dimensional
Hamiltonian spatiotemporally chaotic system will .

N -1 =2dN independent of the details of the dynamics. Although
ET.

To study the localization of LVs, we employ the partici-
pation number, which is defined as

> (10) D, defined in such a way is proportional to the volume of the
i=1 system, i.e., reflects the extensiveness of the system, its value
is always a constant irrespective of the temperature change.

However, the two-point correlation length does change with

quantity_used in the study of disorder-induced Ioc_:alizationthe temperature and it even becomes divergent as a phase
[43], which roughly measures the number of particles thay angition is encountered. In this sense, the Lyapunov dimen-
contribute to the Lyapunov vector. For the homogeneoug;,n, D, and the dimension correlation lengéy are only

i 2= Sx2 2_ i - . . .. .
Lyapunov vector LY, with w*= x’+ éui'=1/N, which cor-  gjyia|ly defined here and not good quantities to characterize

responds to one of the zero-value Lipsattains its maximal  gpatiotemporal Hamiltonian chaos. Here we propose a length
valueN. On decreasing the index of LVs, LEs become largerg.gie pased on the participation number of LVs:

and larger. Accompanying this, the participation numpiét

d_ecreases as shown in Fig. 18,'Where the variation of the é(p“) = lim (p‘@/v)™1d (11)

time-averaged value qf'” versus indexx and\@, respec- Voo

tively, is plotted. The decrease pf® implies that LVs be-

come more and more localized with decreasing whered is the dimension of the physical space ands the
One should note thgt™=2 for LV, corresponding to System volume, which is simplly for ourd=1 case here. In

the smallest positive Lyapunov exponent is significantly dif-this definition, the quantityp'® plays a similar role as the

ferent fromp™ =N for LV with A\(V=0. In Fig. 18,p™-2  fractal dimensiorD in the definition of the dimension corre-

~40 while pN'=100. In the study of space-time chaos, alation length&,. According to the fact we mentioned above,
commonly used measure for quantifying spatiotemporal disépN_z) for LVy-, corresponding to the smallest positive
order is the fractal dimensioD. For spatiotemporal chaotic Lyapunov exponent is a nontrivial value depending on the
systems the associated fractal dimensiDrare typically ex-  state of the system.

tensive quantities, i.e., they grow proportionally to the sys- Now we first show that""? is an intensive quantity like
tem volumeV. According to this, a bounded intensive quan-the conventionally defined dimension correlation length
tity, the dimension correlation length, is defingt4] as &, Here the particle density=N/L is kept fixed and the par-
=limy_.(D/V)~¥d. Based on the intuitive picture that a spa- ticle numberN is increased from 100 to 200. The fit of the
tiotemporally chaotic system is composed of many subsnumerical data in Fig. 19 giveg™2 ~N%%, This tells us
systems and that these subsystems are uncorrelated if thp{§* 2 is proportional to the system si2¢, i.e., it is an ex-

for a Lyapunov vecto(b)(i(“),avi(“)) [42]. This is a standard

-2)
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soidal function A sin(kx+¢). Correspondingly the spatial
power spectrum of the Lyapunov vector turns out to be
nearly aé function atk. Therefore in this case one can un-
ambiguously classify the Lyapunov vectors by their wave
numberk. The situation is quite different in the Lennard-
Jones system. Here the spatial spectrum of the Lyapunov
vector is broadened but still a dominant wave number can be
identified. This reminds us of the difference between sound

modes in solids and fluids, respectively.
In this study we have simulated a large number of system
T S parameter settings with the densjiyin the range from 1/2
to 1/40 andT=0.2, 0.3, and 0.4. Here the average distance
between nearest neighbars=L/N is quite large compared
to the equilibrium distance, defined through/’(rp)=0. The
reason for choosing relatively dilute systems lies in the sus-
pected importance of hyperbolicity for the appearance of the
tensive quantity. Correspondingly, the length s is  Lyapunov mode$11,48. In a dilute Lennard-Jones system
independent ofN and is a well-defined intensive quantity. as considered here, the particles can fly nearly freely for a
The N dependence op'! for the LV corresponding to the quite long period of time, then collide with their neighbors,
largest Lyapunov exponent is shown in the same plot. It ighen separate from each other quickly, and so on. These scat-
fitted with p® ~N%76 j.e., the Lyapunov vector for the larg- tering events are similar to what happens in a hard-core sys-
est LE is highly localized in spadd0,32,35. This is con-  tem. In contrast, if the particle density is increased to a value
sistent with our above observatigsee Fig. 6. comparable to or higher thaiy=1/r,, the effective interac-
Then we study the temperature dependence of the lengtions among the particles become similar to that of a chain of
scale defined above. For a 200-particle system, the temperanharmonic oscillators, where hydrodynamic Lyapunov
ture is increased from 0.4 to 1.6. Results of the simulatiomodes were found to be difficult to obsers8]. This is the
are shown in Fig. 20, where the variation @ with tem-  reason why dilute systems were selected in our study. The
peratureT is also presented. From the plot, one can see thatse of relatively low temperatures is due to similar consid-
p™2 (and consequentlg)'?)) decreases gradually with the €rations. _ _ _
increase in temperature. This agrees with the intuitive expec- N the study of two-dimensional and quasi-one-
tation that increasing the temperature makes the fluctuatiofimensional hard-core systems, two kinds of hydrodynamic
in the system stronger and stronger and renders the systefapunov modes are identifi¢d0,15. One is referred to as
more and more disordered. transverse and the other is called longitudinal. The former
modes do not propagate while the latter ¢46]. According
to this classification, for the transverse Lyapunov modes, tak-
ing the time average can be a useful way to identify the
In this paper, we presented numerical results for thewavelike structure. In contrast to this, the detection of the
Lyapunov instability of a Lennard-Jones system. Our simuiongitudinal Lyapunov modes, which are the only ones
lations show that the stepwise structure found in thepresent in one-dimensional systems, is a relatively difficult
Lyapunov spectrum of hard-core systems disappears contask since due to its propagation time averaging is no longer
pletely here. This is conjectured to be due to the strong fluca suitable method to suppress the fluctuatidis. For the
tuations in the finite-time LE§10]. A technique[40] based case of soft-potential systems, in addition strong fluctuations
on a spatial Fourier spectral analysis is employed to reveah local instabilities lead to an occasional mixing among
the hidden long-wavelength structure in LVs. A significantly Lyapunov vectors. This is partially reflected in the intermit-
sharp peak with low wave number is found in the resultantent time evolution of spatial Fourier spectra of LVs. There-
spatial Fourier spectrum for LVs with=0. This serves as fore the hydrodynamic Lyapunov modes in soft-potential
strong evidence that hydrodynamic Lyapunov modes do existystems are more vague and more difficult to obs¢hé.
in soft-potential systemigt6]. The disappearance of the step In this work, Fourier spectral analysis has been shown to be
structure and the survival of the hydrodynamic Lyapunovquite successful in detecting the hidden wavelike structures
modes show that the latter are more robust and essential thém LVs. A more general theoretical consideration of this
the former. Another important finding is that the dispersionmethod is given elsewhefdQ].
relation for hydrodynamic Lyapunov modes® versuskqay In studies of the hard-core case, it is conjectured that de-
appears to be universal for all the system temperatures argkneracies in the Lyapunov spectrum and in wave numbers
particle densities used in our simulations. This finding will of hydrodynamic Lyapunov modes are determined by the
not exclude a possible density dependence of the dispersiantrinsic symmetries of the Hamiltonian and the boundary
relation for systems in the high-density regif&]. conditions. There is no contradiction between this statement
There is a difference between the Lyapunov vectors of ouand the results reported here. The crucial point is the lifetime
Lennard-Jones system and those for the hard-core systeofi hydrodynamic Lyapunov modes. The above statement is
studied before. In hard-core systems, a Lyapunov vector witlfor the ideal case of pure modes with infinite long lifetime.
a near zero Lyapunov exponent can be well fitted by a sinuFor the Lennard-Jones system studied here, the strong fluc-

FIG. 20. Time-averaged participation numipéY andp™-2 vs
temperaturel. The parameter setting used hereNsz200 andL
=220.

-2)
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tuation in local instability of trajectorieéwvhich is reflected for providing us with his molecular dynamics simulation
on the wild fluctuations of finite-time Lyapunov exponents code, on which our program is built. Financial support from
leads to the mutual interaction and mixing among modesDFG-SFB393 within the project “Long time behavior of

which renders the lifetime of modes becoming finite. On thelarge dynamical systems” is gratefully acknowledged.
other hand, Lyapunov exponents are global quantities of the

system, which are the result of a time average along a long
trajectory wandering all over the phase space allowed. DUAPPENDIX: ENERGY FLUCTUATION, ZERO-VALUE
to the mixing among modes, the Lyapunov exponents no LYAPUNOV EXPONENTS, AND LYAPUNOV MODES
longer correspond to certain pure modes but to a mixture of . . . . .
several modes. Therefore the degeneration predicted on the N this appendix we address in detail the issue of the qual-
basis of a symmetry analysis cannot be seen here. Actuall{fy ©f the zero-value Lyapunov exponents obtained in the
fluctuations in the local instability of trajectorigfluctua-  nhumerical simulations and their influence on the Lyapunov
tions in the finite-time Lyapunov exponehtdo exist in all  modes.
dynamical systems. For the hard-core systems, however, it is
relatively weak in the directions corresponding\te-0 (see
Fig. 12 in[10] for the comparison of fluctuations in finite-
time Lyapunov exponents for the hard-core case and the For the one-dimensional Lennard-Jones system studied
WCA case. Therefore the mixing among modes is quite rarehere, four zero-value Lyapunov exponents are expected
and weak. In consequence the lifetimes of the modes with10,12,14. Two of them correspond to momentum conserva-
A=0 are quite long and even longer than the simulationtion and translational invariance in space. The other two cor-
time. Evidence for our arguments above comes from the faatespond to energy conservation and translational invariance
that for hard-core systems the fluctuations in finite-timejn time. Numerical simulations show that the two corre-
Lyapunov exponents become stronger for increasingd#®  sponding to space translational invariance and momentum
Fig. 12 in Ref[10]) and correspondingly the step structure is conservation are very close to zero since these properties are
less pronouncetore inclined for larger LEs(see Fig. 8in  preserved exactly during the numerical integration of the
Ref. [10]). _ . system dynamics. The Lyapunov exponaft’® shown in

Until now, only the coo_rdmate part of the LVs was used in Fig. 3 (and\19? not shown for symmetry reasonselongs
the study of hydrodynamic Lyapunov modes. For the case .09(0 this pair. The other pair of Lyapunov exponeft€® and

hard-core system, this is reasonable due to the interestingioy : :
feature of those LVs corresponding to near-zero LEs found irrblg ) corresponding to the energy conservation and the

[12] that the angles between the coordinate part and the mdransiational invariance in time deviate from zero to a larger
mentum part are always small, i.e., the two vectors are nearl xtent. This is d.ue to numercal errors n the S|muIaF|on of
parallel. For our soft-potential system, we find that the angle e system and its tangent space _dynamms. A.S we d|§cussed
between the coordinate part and the momentum part are rfg'éady in Sec. IllA, the numerical integration of time-
longer as small as in hard-core systems. Even for hard-cofgPntinuous systems on a computer will inevitably introduce
systems, recent results show that the two vectors are négviations from the exact behavior. The resulting fluctuations
always paralle[32]. Therefore it is necessary to reconsiderin the total energy or errors in the tangent space dynamics
the momentum part of LVs. lead to the observed deviation of this pair of Lyapunov ex-
We studied also the influence of density and temperatur@onents from zero. Obviously the integration step size used
changes on the features of LVs and LEs. One effect of deto generate the data in Fig. 3 is not small enough to discrimi-
creasing the density is that the Lyapunov spectrum becomesate the LEs which have to be zepd®® and\*%?9) and the
more and more bent. The relation of the bending in thenonzero LEs such as the neighborix§” and\®®. In prin-
Lyapunov spectrum to the separation of time scales was digiple, one can bring the values of LEE? and\1%? closer
cussed recently in the work of Taniguchi and Morfi82]. It  to zero by reducing the integration step size and by averag-
is obvious that the collisions between particles become moring along a sufficiently long trajectory. Because of the lim-
and more rare as the density is decreased. They beconited computer capacity, we perform numerical simulations
highly localized events since they happen at only a fewfor a system with a small number of particléé=>5) to sup-
places at one moment. Therefore, the time scale of locgbort these statements.
collision events, which is related to the largest L[23, is
well separated from that for the collective motion of the sys- [T T
tem, corresponding to the near-zero LEs. A further point is
the sudden jump found ik,,,, Of the time-averaged spatial
Fourier spectrum of LVs. It divides the whole set of LVs into
two groups. The place of this sudden jump is in the regime 10 |
where the Lyapunov spectrum is strongly bent. Further work 1070, e e e ]
is needed to reveal the underlying connection between these 10 10 10 10 10
phenomena.

1. Zero-value Lyapunov exponents with large fluctuations

._.
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T
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FIG. 21. The standard deviation of the total energ{E)
ACKNOWLEDGMENTS = V((E—(E})Z) versus the integration step sibe where(:--) de-
We thank H. A. Posch, W. Kob, A. S. Pikovsky, W. Just notes the time average. The parameter settings used heN=&ie

and A. Latz for fruitful discussions and W. Kob in addition L=20, andT=0.1.
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04 ' ! ! ! FIG. 24. Fluctuation strengtlr(\(*(7g9) of the short-time
=,03F 3 Lyapunov exponent® (79 versus the integration step size
e 1 Other parameters used here are the same as in Fig. 22.
& 021 .
Y oo Verlet |
= 1 EEORK4 ] . (@ .
© 01 ] thermore, the value of the fluctuation strengifA'¥(7g9) is

0.05 . 3 s nearly independent of the integration stefdsee Fig. 24

o Extensive numerical simulations show that these large fluc-

tuations in the short-time behavior of the expansion rates
corresponding to the pair of zero-value Lyapunov exponents
— (I\(769 ~M\(7e) ) (bottom panel versus the index of the a:rsocwgted with r:he energyl_con?err:/atlonﬁls not _ar|1 artificial
Lyapunov exponents. The data ofo(\(?)(7g9) from simulations effect but an inherent quality of the soft-potential system

G studied. The use of the smoother interaction potentials from

using the fourth Runge-Kutta integrator are also presented for ConTEqs (3) and (4) or the use of different integration routines

arison.rgsis the period between reorthogonalizations of the offset )
y S P 9 leads to basically the same results. The Lyapunov spectrum

vectors and heregs=400h. The integration step used lis=0.002. . (@ .
The length of the trajectory used for time averagingris1.28  and the fluctuations(\'*) as a function of« for a system

% 10n. with N=40, L=160, andT=0.8 are shown in Fig. 25. Here
the interaction potentia¥(r) is of the form as stated in Eq.

As can be seen in Fig. 21, the fluctuations in the total(4) and the system is integrated with the fourth-order Runge-
energy decrease gradually with decreasing integrationrstep Kutta algorithm. This figure explicitly shows that the validity
For such a System, the Lyapunov exponen‘lﬁ and )\(7) of these results is not restricted to small SyStem sizes and that
correspond to the energy conservation and the time transldbey are independent of the integration algorithms. Our nu-
tional invariance. An example of the Lyapunov spectrum ofmerical results for the dynamiXY model [16] using the
this system is shown in Fig. 22. In Fig. 23, we plot the Runge-Kutta algorithm show similar large fluctuations for
variation ofA® with the integration step. For comparison, the short-time Lyapunov exponents corresponding to the en-
the value of\® is plotted in the same figure. The numerical €9y conservatio49]. These large fluctuations imply the
value ofA® is nearly constant irrespective of the change innecessity of using long enough trajectories for an accurate
the integration stefh, while the value ofA® decreases determination of theaveragg Lyapunov exponents corre-
gradually with decreasinfy. This figure shows that by vary- sPonding to energy conservation.
ing the step sizé the zero-value LEs can be identified. These studies show that two factors are crucial for the

In the lower panel of Fig. 22 the quantity(\(“)(759) quality of the numerical estim_ation o_f these zero-value
measuring the fluctuations of the finite-time Lyapunov expo--yapunov exponents1) a small integration step an@) a
nents is shown. It is nearly zer@f the order 102 for long enough trajectory for the average_of the f|n|te—t|me.
Lyapunov exponenta® and A® which correspond to mo- Lyapunov exponents. The former determines the systematic

mentum conservation and space translational invariance. I&Tor of the estimation, i.e., the deviation of its mean from
contrast,a(\(®) for the other pair of zero-value Lyapunov Z€ro; while the latter determines the statistical error, i.e., the

exponents)\(“) and\? are of the order 0.1. which is of the standard deviation of an ensemble of estimations obtained
same order as for their nonzero neighbef® and\®. Fur-

FIG. 22. Lyapunov exponent® (top panel and the standard
deviation of the finite-time Lyapunov exponents(A(®(7gg9)

0.02r

FIG. 23. The values of the exponents and A\ versus the
integration step sizb. Here the reorthogonalization period is fixed FIG. 25. M@ and o(A¥9(759) for a system withN=40, L
at 7¢5=0.8 and sufficient long trajectories are used for averaging in=160, andT=0.8. The interaction potential is of the form stated in
order to achieve a good convergence of the data gotten. Other p&q. (4). The system is integrated with the fourth-order Runge-Kutta
rameters used here are the same as in Fig. 21. algorithm.
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FIG. 26. Lyapunov spectrum for a system with the Stoddard- FIG. 28. The time evolution of the peak wave numketupper
Ford Lennard-Jones potential in E@). Apart from the choice of pane) and the instantaneous spectral entrbift) (lower panel for
the potential cutoff all the parameters are the same as in Fig. 3. the Lyapunov vector no. 95 of the system used in Fig. 26. The

similarity to Fig. 8 is obvious.

under the same conditions. Now we discuss what is meant by
the phrase “long enough trajectory.” Let us denote the estidetails of the numerical integratiofstep size, trajectory
mated value of a Lyapunov exponent from a trajectory ofiength), the characteristic features of the hydrodynamic
length 7 integrated with the step sizeas\(7,h). A neces-  Lyapunov modes are quite robust. This fact is exemplified by
sary condition for a good estimation ig(A(h,7))<Aq(h)  changing the potential to the Stoddard-Ford form of €.
where o(\(h, 7)) is the standard deviation of(h,7) and  Comparing Fig. 3 with Fig. 26 demonstrates the change in
Ao(h)=lim__ ..\(h,7) is the asymptotic value of this zero- the value ofA®?, in this case to an improved estimate. On
value Lyapunov exponent for the integration step $iz€he  the other hand the corresponding Lyapunov vector turns out
guantity o(\(h, 7)) is related too(\(h,7gg) and can be ap- to be qualitatively the same as before. The simulations for a
proximated asr(\(h, 7))~ (7/ 759 Yo(\(h, 7g9) wherey is  system with the interaction potential of E@) give similar
a positive constant typically of the ordér The indepen- results as we present below.
dence ofs(\(h, 759) for smallh as shown in Fig. 24 implies ~ We emphasize first that the Lyapunov spectrum of a sys-
that o(\(h, 7)) scales adr/7z9~?. The decreasing ok®  tem with Stoddard-Ford Lennard-Jones poterifia). (3)], as
with decreasingh as shown in Fig. 23 suggests thag(h) shown in _F|g. 26, also does not exhibit the step ;trupturgs
~h” where 7 is a positive constant. This amounts to an observed in hard-core systems. Secondly, we depict in Fig.
estimation of the minimal length, of the trajectory needed
for a given integration step sizeas 7,=constx h™”7, This
implies that an improvement of the estimation of the zero-
value Lyapunov exponent with decreasing step dizas
shown in Fig. 24 is possible under the condition that the
averaging period is extendddot smaller tharh™77) at the
same time. Both a smaller integration step and a longer tra-
jectory are necessary conditions for improvement in the es-
timation of these zero-value Lyapunov exponents. Both mea-
sures lead to a fast increase of computational costs. These
considerations explicitly provide a means of improving the -4 -35
accuracy of the Lyapunov exponexif? in Fig. 3.

-3 -25 -2
log,  (k/2m)

Influence of the quality of the zero-value Lyapunov exponent
on the Lyapunov modes

While the quality of the zero-value Lyapunov exponents %@@@
corresponding to energy conservation is quite sensitive to the 5 89°°§
T T T T \:< ee
— y=049x"®
il L
107 10"
k _2n
max
-5 10-5— R I . 1 . | R I L] i @)
X <5600 100000 150000200000 230000 FIG. 29. (Color online The contour plot of the spectrunﬁJu

T: the averaging time (upper panél and the dispersion relation® versuskq,y (lower
pane) for the system shown in Fig. 26. See Figs. 11 and 12 for
FIG. 27. The part-time-averaged value)df? versus the aver-  similar results of the model with the interaction potential stated in
aging time. Eq. (2).
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27 the convergence af®? with increasing averaging time. It
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The contour plot of the spectruﬁﬁﬁ) is shown in Fig. 29.

shows that the numerically estimated value of this LyapunovThe ridge structure in the smalland A regime indicates the
exponent behaves irregularly as a function of the averagingxistence of the hydrodynamic Lyapunov modes. Rhk

time and decreases only in the mean. This confirms the neeglspersion relation extracted is quite close to a linear one.
for increasing the averaging time to obtain an accurate estifhe similarity to Figs. 11 and 12 is obvious.

mate of the Lyapunov exponenf® but that one can get
very good estimates also accidentally.
The peak valug. and the spectral entropil(t) of the

Our results above show that the Lyapunov spectrum, es-
pecially the pair of zero-value Lyapunov exponents corre-
sponding to energy conservation, is sensitive to the details of

instantaneous spectrw,tﬁ)(k) for Lyapunov vector no. 95 of the models considered, while the behavior of the Lyapunov
the above system are plotted against time in Fig. 28. The&ectors is quite robust. At least, the existence of hydrody-
intermittent behavior of both quantities is similar to the onenamic Lyapunov modes is universal irrespective of these

shown in Fig. 8.
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